CSCI 2244 — Homework 7

Out: Friday, October 25, 2019
Due: Friday, November 8, 2019, 11:59pm

This homework consists of written exercises and coding problems. You must type your so-
lutions. See the “Assignments” section in the syllabus for advice about doing this. You should
submit your homework via Canvas. In particular, you should upload a zip file called:

FirstName_LastName_Homework?7.zip

Please use your full first name and last name, as they appear in official university records. The
reason for doing so is that the TAs and I must match up these names with the entries in the
gradebook.

This zip file should contain 2 files:

e written.pdf — containing your answers to all the tasks in section 1, and the results of running
your code as requested by the task in section 2.

e shuffle.py — containing the code you wrote for section 2.

1 Written Exercises

The problems below involve analyzing various finite Markov chains. As we saw in class, this amounts
to analyzing the transition matrix and computing things like inverses and eigenvectors. See the
appendix for an explanation of how to compute these things in Python.

Task 1.1 (12 pts). Consider the following Markov chain:

1 1
2 3




Answer the following questions assuming we start in the state specified and repeatedly transition
until reaching an absorbing state:

(a) If the chain starts in state 1, what is the probability the absorbing state reached will be 47

(b) Starting from state 1, what is the expected number of times the chain will be in state 2 before
absorption?

(c) Starting from state 2, what is the expected number of transitions we need to take to reach
an absorbing state?

Task 1.2 (12 pts). Consider the following Markov chain:

1
2

(a) What is the mean first passage time from state 1 to state 37
(b) What is the mean first passage time from state 3 to state 17

(¢c) What is the mean recurrence time for state 47

Task 1.3 (6 pts). A gambler repeatedly plays a game in which she wins $1 with probability % and
loses $1 with probability % She starts with $2. She keeps playing the game until she has either $0
or $5.

(a) Represent the above scenario as a Markov chain, where the states correspond to how much
money the gambler has, and the states corresponding to $0 and $5 are absorbing states. You
can either draw a picture or write the transition matrix. Make it clear how much money the
gambler has in each of the states.

(b) What is the probability that the gambler leaves with $57



2 Coding

Given a deck of cards, we would like to shuffle the cards to randomize their ordering. A standard
way to do this is the so called riffle shuffle: we split the deck into two roughly even halves, and then
interleave cards from the halves together by dropping cards from each half on top of one another.
A natural question to ask is how many shuffles we have to do to get the ordering to be random
enough.

In this question, we will write code to explore this question for a simpler form of shuffling called
top-to-random shuffling. In the top-to-random shuflle, we take the top card from the deck and put
it in a random position in the deck, each position being equally likely. (The random position can
include leaving it at the top of the deck.).

For example, suppose we have a deck containing cards numbered 1 through 10. Imagine that
initially the position of the cards is (from top to bottom):

12345678910
Then after one top-to-random shuffle, the order might be:
23145678910

so that 2 is now at the top. Intuitively, the deck is still far from “random” after a single top-to-
random shuffle. But if we repeat the top-to-random many, many times, then eventually it seems
that the position of cards will be close to a uniformly distributed random permutation.

We can represent this process as a Markov chain, where the state is the current order of the
cards in the deck, and each transition is a single round of top-to-bottom shuffle. Throughout, we
will assume cards are just numbered, and do not have suits or anything like that.

Task 2.1 (1 pts). If the deck has 10 different cards, how many states does this Markov chain have?

Task 2.2 (2 pts). Write a function called top_to_random(l, n, printing) that takes a list 1
and performs n iterations of the top-to-random shuffle starting from 1, and returns the result. If
printing is True, then the routine should print the state of the list after each iteration. In your
write-up, include the output of running top_to_random([1, 2, 3, 4, 5], 10, True).

Task 2.3 (3 pts). Write a function monte _carlo(l, n, k, r) which uses Monte Carlo simulation
to estimate the probability that the card with value n is at the top of the deck after k iterations of
shuffling, starting from the list 1. The procedure should do r Monte Carlo trials to estimate this
probability.
In your write-up, for each value of k in the set {10,25,50,75,100}, include the estimated
probabilities when [ is the list:
12345678910

n = 10, and r = 200000.

A Linear Algebra in Python

We can use the numpy library in Python to do various calculations with matrices. See https:
//docs.scipy.org/doc/numpy/reference/routines.linalg.html for the linear algebra library


https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

documentation. Below is a brief overview of the main commands. As usual, we can start by
importing the numpy library:

>>> from numpy import *

Use array to define a matrix. For example, the following command defines the matrix
1 2
3 4

We can add together two matrices just using +:

>>> M = array([[1, 2], [3, 411)

>>> N = array([[5, 6], [7, 81]1)
>>> M + N
array([[ 6, 8],

(10, 1211)

Multiplication of matrices uses the dot function:

>>> dot(M, N)
array([[19, 22],
[43, 501]1)

We invert a matrix using linalg.inv:

>>> Minv = linalg.inv(M)

>>> dot(M, Minv)

array([[1.0000000e+00, 0.0000000e+00],
[8.8817842e-16, 1.0000000e+00]11)

Due to rounding errors, the product of M and its inverse is not exactly, the identity matrix, but it
is close. eye(n) returns the n X n identity matrix:

>>> eye(3)

array([[1., 0., 0.]
[0., 1., 0.]
[0., 0., 1.]

D
Finally, we can compute right eigenvectors using linalg.eig. This returns both a list of eigenval-

ues, and then an array of eigenvectors for those eigenvalues. Where the ith column of this array is
an eigenvector for the ith eigenvalue.

>>> evals, evects = linalg.eig(M)
>>> evals
array([-0.37228132, 5.37228132])
>>> evects
array ([[-0.82456484, -0.41597356],
[ 0.56576746, -0.90937671]1])
>>> # Get the eigenvector for the first eigenvalue:



. vl = [vects[i][0] for i in range(2)]

>>> # Check that it’s actually an eigenvector with that value
. dot(M, v1)

array([ 0.30697009, -0.21062466])

>>> dot(evals[0], v1)

array ([ 0.30697009, -0.21062466])

How can we find the left row eigenvectors? The key is that the left eigenvectors of a matrix can
be found by computing the right eigenvectors of the transpose of the matrix. The transpose makes
the rows of a matrix into columns and vice versa. Finding the eigenvectors of the transpose will
give us column vectors, so to get back to row vectors we transpose again:

>>> leval, levects = linalg.eig(transpose(M))
>>> leval
array([-0.37228132, 5.37228132])
>>> levects
array([[-0.90937671, -0.56576746],
[ 0.41597356, -0.82456484]])
>>> 1vl = transpose([levects[i] [0] for i in range(2)])
>>> dot(lvl, M)
array([ 0.33854396, -0.15485919])
>>> dot(leval[0], 1v1)
array([ 0.33854396, -0.15485919])

Sometimes the eigenvectors you get back will be complex numbers with an “imaginary” component.
You can extract a real number out using the function real.
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