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1 Poisson Distribution

Recall that a random variable X has a Poisson distribution with parameter µ if it has the
probability mass function:

P (X = j) =
µj

j!
· e−µ

for all j ∈ N. For short, we will write Po(µ) for the Poisson distribution with parameter
µ. The Poisson distribution has the follow properties.

Theorem 1. If X is a random variable with distribution Po(µ), then E[X] = µ and
Var[X] = µ.

Theorem 2. If X has distribution Po(µ) and Y has distribution Po(λ), and X and Y are
independent, then X + Y has distribution Po(µ+ λ).

2 Poisson Approximation

Theorem 3. Let X1, X2, . . . be a sequence of random variables, where Xn has distribution
Binomial(n, pn). Assume that for all n, npn = λ. Then,

lim
n→∞

P (Xn = k) =
λk

k!
e−λ (1)

Notice that the right hand side of the Equation 1 is equal to the PMF for the Po(λ)
at value k. In other words, as n → ∞, Xn’s PMF gets closer and closer to that of Po(λ).
So, for large n, we can approximate Xn’s behavior by that of a Po(λ) distributed random
variable.

But the theorem above does not tell us how good this approximation is, or how large
n should be. Fortunately, there is a stronger theorem that bounds how far off the approx-
imation is:
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Theorem 4. Let I1, . . . , In be independent Bernoulli random variables, where Ik has
distribution Bernoulli(pk). Set λ = p1 + · · · + pn. Let W = I1 + · · · + In and let Y be
a Po(λ) random variable. Then, for all A ⊆ N,

|P (W ∈ A)− P (Y ∈ A)| ≤ λ−1(1− e−λ)

n∑
i=1

p2i

By taking A to be a singleton set, say A = {v}, the above becomes a bound on the
absolute difference of P (W = v) from P (Y = v).

When all of the pi are equal to p, then λ = np and W is Binomial(n, p). In that case, the
error bound simplifies to (1−e−np)p. Thus if p is small the bound is quite good. Similarly,
if np is close to 0, then (1− e−np) will also be small, so the bound is good in this scenario
too.

Example 1. Suppose 106 people participate in a lottery. Each person picks a random
number from 1 to 107, each equally likely, with duplicates allowed. Then, the lottery
organizer draws a random number from 1 to 107. Everyone who picked the number that
was drawn wins. What is the probability that there are exactly 5 winners?

We let Ik be the indicator which is 1 if person k has their number drawn. Then, the
probability pk that Ik = 1 is 1

107
. Then W = I1 + · · ·+ I106 is the number of winners. The

question asks us to find P (W = 5).
The approximation theorem suggests we consider a random variable Y having Poisson

distribution with parameter 106 · 1
107

= 10−1 and use P (Y = 5) as the approximation.

P (Y = 5) =
(10−1)5

5!
e−10

−1 ≈ 7.54 · 10−8

W has a Binomial(106, 10−7) distribution, so using a computer we can calculate the
exact probability P (W = 5). When I used the formula for the Binomial PMF with these
parameters, the result was ≈ 7.54 · 10−8, although I got a warning about possible rounding
errors. The error bound from the theorem is ≈ .95 · 10−8. So in this case the actual
approximation is quite close, and the error bound is overly conservative.

As stated, Theorem 4 only applies when each of the Ik are independent. However, it
turns out that we can apply the Poisson approximation even in some situations where the
Ik are not independent. In particular, if the Ik are what is known as negatively related,
then we can still apply a Poisson approximation.

The full, technical definition of what it means to be negatively related is too advanced
for this class. However, there is an important class of negatively related variables that is
useful to know about:

Example 2. Suppose you throw m balls into n bins, where a ball lands in bin k with
probability qk. Let Xk be the number of balls in bin k. Let f1, . . . , fn : N → 0, 1 be
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functions which are either all monotonically increasing or all monotonically decreasing.
Set Ik = fk(Xk). Then the Ik are negatively related.

It turns out that many problems of interest can be phrased in terms of a “balls into
bins” scenario by analogy. Notice that the Xk are not independent. The intuition here
is that every ball that falls into, say, bin k does not fall into one of the other bins. So
when Xk is large, the other Xj are relatively smaller. In the extreme case, when Xk = n,
we know the other bins have no balls. Since the fk functions are all either decreasing or
increasing, the indicators Ik have a similar property as the ball counts: if Ik = 1, the other
Ij are more likely (roughly speaking) to be 0, which is why this property is called being
negatively related.

Theorem 5. Using all the same notation as Theorem 4, except now we assume that the
Ik are negatively related instead of being independent. Then

|P (W ∈ A)− P (Y ∈ A)| ≤ (1− e−λ)

(
1− Var[W ]

λ

)
Unfortunately, Var[W ] can be challenging to estimate, because the Ik are no longer

independent. Still, a rough heuristic is that the approximation will be good when λ is
small or the maximum of the pk is small.

Example 3. Let’s revisit the birthday problem but for the case where we want to count
whether there are any “triplets”: that is, we want to know if there’s some day on which at
least 3 people in the group were all born on that day of the year. We were able to solve
this problem before with 2 people being born on a common day, but we had to resort to
Monte Carlo simulation on Homework 2 for the 3 person case.

We think of the days of the year as being bins and the people in the group as being
the balls: a person is in the bin for a given day if that day is their birthday. Let Xk

be the number of people born on day k. Let Ik be 1 if Xk ≥ 3 and 0 otherwise. Then
W = I1 + · · ·+ I365 counts the number of days which have at least 3 people born on them.
The Ik are negatively related, so we can apply a Poisson approximation. Let’s say there
are 20 people, to match the problem we simulated for the homework.

What is pk, the probability that Ik = 1? We have:

pk = P (Ik = 1) = 1− P (Ik = 0) = 1− P (Xk = 0)− P (Xk = 1)− P (Xk = 2)

So we just have to find P (Xk = 0), P (Xk = 1) and P (Xk = 2). What is the distribution
of Xk? Well, it counts the number of people that land in bin k. There are 365 bins, and
any given person falls into bin k with probability 1/365. Since each person’s birthday
is assumed to be independent of the others, if there are 20 people, then Xk is just a
Binomial(20, 1/365) random variable. So, using the formula for the CDF of a binomial:
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pk = 1−
(

364

365

)20

−
(

20

1

)
1

365

(
364

365

)19

−
(

20

2

)(
1

365

)2(364

365

)18

= 2.2639 · 10−5

All of the days are the same so all of the pi are equal to this value. There are 365 days,
so we take λ = 365 ·2.2639 ·10−5. Then we want to know the probability that there’s some
day with at least 3 people born on it. We have:

P (W > 0) = 1− P (W = 0) ≈ 1− e−λ = 0.0082632

The Monte-Carlo simulation from HW2 had .00835 in the official solutions, so the two
approximations are pretty close!

Example 4. We can also apply the Poisson approximation to the coupon collector problem.
Recall that we open up a box of cereal and get a random toy. There are n different types
toys, each equally likely. We want to understand how many boxes of cereal we have to
open before we get a complete set of all the toys.

We can think of the n toy types as being n different bins. Each box of cereal we open
represents throwing one ball, where the type of the toy corresponds to which bin we hit.
So then Xk represents how many toys of type k we have.

We want to study whether we have obtained a complete set after opening some number
of boxes, that is, we want to know if there are any empty bins left. That suggests we set
Ik = 1 if Xk = 0, so that W = I1 + . . . In is the number of empty bins.

If we open up m boxes of cereal, what is pk, the probability that Ik = 1? Well, if
Ik = 1, then Xk = 0, so all the balls we threw missed bin k. Hence pk =

(
n−1
n

)m
. So then

λ = n
(
n−1
n

)m
.

The probability that there are no empty bins is then approximately:

P (W = 0) ≈ e−λ

In class we showed that the expected number of boxes we have to open is roughly
n log n. Concretely, let’s say n = 50, so that n log n ≈ 196. What’s the probability that
we have a complete set after we’ve opened 1.5 · 196 = 294 boxes? Plugging these values in,
we get that pk ≈ 0.0026331, and λ = 6.5827. Hence, P (W = 0) ≈ 0.87664. I did a Monte
Carlo simulation and got 0.874430 for these parameters.

Example 5. What if we had tried to solve the coupon collector problem by making Ik = 1
if Xk ≥ 1. Then W would count the number of distinct toys we have, so we could have
asked for P (W = n) to find the probability that we would have all the toys. With this
scenario, pk = 1 − P (Xk = 0) = 1 −

(
n−1
n

)m
. With n = 50 and m = 294, pk = 0.99737,

λ = 49.868. we get P (W = 50) ≈ λ50e−λ

50! = 0.056315, which is a terrible estimate (as we
saw, the answer should be about 0.87 or so).

Why did the Poisson approximation not work? Well, pk is almost 1, and λ is not small
either. So the error bound is in fact quite bad, as we would expect from our heuristic.
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Example 6. Let’s say we’re in the setting of the coupon collector problem again, but this
time the collector has a younger sibling. In the spirit of generosity, the collector now tries
to acquire 2 complete sets of toys, so that they can give 1 set to the sibling. In that case,
we want to count how many bins have fewer than 2 toys, that is, how many are we missing
to form a double set.

With that in mind, we want Ik = 1 if Xk = 0 or Xk = 1. Hence

pk =

(
n− 1

n

)m
+m · 1

n
·
(
n− 1

n

)m−1
Plugging in n = 50 and m = 294 again, this means λ = 0.92158. So that P (W = 0) ≈
e−λ = 0.397. This time, my Monte Carlo simulation gave 0.376990. Still pretty close! (We
should expect that the approximation might be slightly worse according to our heuristic
above, since pk has increased here relative to Example 4.)

The Theorem 3 occurs in many references and books. The other theorems are less
commonly stated. I found them in Barbour et al. [1], which has many other interesting
results and details. However, this book is overall written at a very advanced level.
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