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Abstract
Storage systems make persistence guarantees even if the

system crashes at any time, which they achieve using recov-

ery procedures that run after a crash. We present Argosy, a

framework for machine-checked proofs of storage systems

that supports layered recovery implementations with modu-

lar proofs. Reasoning about layered recovery procedures is

especially challenging because the system can crash in the

middle of a more abstract layer’s recovery procedure and

must start over with the lowest-level recovery procedure.

This paper introduces recovery refinement, a set of condi-
tions that ensure proper implementation of an interface with

a recovery procedure. Argosy includes a proof that recov-

ery refinements compose, using Kleene algebra for concise

definitions and metatheory. We implemented Crash Hoare

Logic, the program logic used by FSCQ [8], to prove recovery

refinement, and demonstrated the whole system by verifying

an example of layered recovery featuring a write-ahead log

running on top of a disk replication system. The metatheory

of the framework, the soundness of the program logic, and

these examples are all verified in the Coq proof assistant.

CCS Concepts • Theory of computation → Program
verification; • Hardware→ System-level fault tolerance.

Keywords Kleene Algebra, Refinement
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1 Introduction
Storage systems, including file systems, databases, and persis-

tent key-value stores, must protect data from loss even when

the computer crashes (e.g., due to a power failure). These

systems provide crash-safety guarantees about what data

persists if such crashes occur. To achieve these guarantees,

many systems perform some form of repair in a recovery

procedure that runs after a reboot.

Storage systems are typically structured into several lay-

ered abstractions. For example, a storage system might use

several physical disks for redundancy. By replicating writes

across these disks, the storage system can implement an in-

terface presenting a single synchronous disk, and then use

write-ahead logging to implement a transactional API for

atomically writing multiple disk blocks (see Figure 1).

Multiple unreliable disks

Single disk

Transactional API

Replication

Logging

Figure 1. A simple storage system that uses recovery at

multiple layers of abstraction.

If the computer crashes, write operations may have oc-

curred on only some of the physical disks. To repair its state,

the storage system runs a recovery procedure after reboot.

First, it propagates missing writes to the remaining disks to

restore replication. Then, it reads the transaction log to de-

termine if transactions need to be aborted or applied, based

on whether the system crashed before or after they were

committed. The storage systemmay have to run the recovery

procedure several times, because the system can crash again

during recovery.

https://doi.org/10.1145/3314221.3314585
https://doi.org/10.1145/3314221.3314585
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Because a storage system needs to handle crashes at any

time,
1
implementing and testing them is difficult. Storage

systems in practice have had bugs that resulted in data loss

and data leaks [16, 17, 23]. Since these bugs are costly, formal

verification is attractive because it can rule out large classes

of bugs. For verification to scale to modern, complex storage

systems, the proofs for the implementations in each layer

should be independent. This independence is hard to achieve

because crashes during one layer of abstraction’s recovery

procedure requires re-running all of the recovery procedures

of lower levels. For example, with the system in Figure 1, a

crash in the middle of the write-ahead log’s recovery proce-

dure may leave disks out-of-sync, which requires starting

over with the replicated disk’s recovery.

This paper presents Argosy, a framework for verifying

storage systems that supports layered recovery procedures

with modular proofs. Argosy introduces the notion of re-
covery refinement, a set of proof obligations for an imple-

mentation and recovery procedure. These obligations are

sufficient to guarantee clients observe the specification be-

havior, including with multiple crashes followed by recovery.

Furthermore, recovery refinement composes between two

implementations: this allows the developer to prove each

implementation separately and then obtain a proof about

the whole system with a general composition theorem. We

describe the metatheory behind recovery refinement in sec-

tion 4. The framework is encoded in the Coq proof assistant,

with machine-checked proofs of soundness.

There are several existing systems that support reasoning

about crashes and recovery, particularly in the context of

file-system verification [7, 8, 11, 26, 28]. Most have no sup-

port for layered recovery, since they consider only a single

recovery procedure at a time. The Flashix modular crash

refinement work [11] does consider layered recovery, but to

simplify proofs recovery procedures cannot rely on being

able to write to disk. Argosy supports active recovery proce-

dures which write to persistent storage; both the replicated

disk and write-ahead log implementations rely on active

recovery. Furthermore, the metatheory for a number of exist-

ing systems is based on pen & paper proofs, whereas Argosy

has machine-checked proofs for both the metatheory and

example programs.

To prove recovery refinement within a single layer, Ar-

gosy supports a variant of Crash Hoare Logic (CHL), the

logic used in the FSCQ verified file system [7, 8]. Argosy gen-

eralizes FSCQ’s CHL by supporting non-deterministic crash

behavior, whereas FSCQ modeled only persistent state and

assumed it was unaffected by a crash. The main benefit of

using CHL is that as long as recovery’s specification satisfies

1
In this work we use “crash” to refer to the entire storage system halting

and requiring restart, such as due to a power failure or kernel panic.

an idempotence condition, the developer can reason about re-

covery using only its specification and ignore crashes during

recovery.

To simplify the definition of recovery execution as well as

facilitate proofs of Argosy’s metatheory for recovery refine-

ment, we formulated the execution semantics and recovery

refinement using the combinators of Kleene algebra [18].

Kleene algebra is well-suited for this purpose because it

models sequencing, non-determinism, and unbounded iter-

ation, which arise naturally when reasoning about crashes

and recovery.

As a demonstration of Argosy, we implemented and ver-

ified the storage system of Figure 1. The disk replication

and write-ahead log are separately verified using CHL, each

with its own recovery procedure; section 6 details how this

proof works in CHL within Argosy. We then compose them

together to obtain a verified transactional disk API imple-

mented on top of two unreliable disks. The composed imple-

mentation extracts and runs, using an interpreter in Haskell

to implement the physical disk operations at the lowest level.

The paper’s contributions are as follows:

1. Argosy, a framework for proving crash-safety proper-

ties of storage systems that introduces recovery refine-
ment to support modular proofs with layered recovery

procedures.

2. Machine-checked proofs in Coq of the metatheory

behind recovery refinement that are simplified by ap-

pealing to properties of Kleene algebra.

3. An implementation of Crash Hoare Logic (CHL) for

proving a single layer of recovery refinement, which

we use to verify an example of a storage system with

layered recovery.

2 Related Work
Verified storage systems Crash Hoare Logic [8] and Yg-

gdrasil [28] are two frameworks for reasoning about storage

systems, in which the authors built verified file systems

(FSCQ and Yxv6, respectively). These frameworks address

a number of complications raised by storage systems, espe-

cially reasoning about crashes at any time, recovery follow-

ing a crash, and crashes during recovery. CHL introduces

the notion of a crash invariant, an execution invariant that

recovery relies on, as well as idempotence, a property where

recovery’s precondition is invariant under crashes during

recovery. Yggdrasil takes a different perspective on specifi-

cations and uses refinement from the abstract specification

to the code, proving the code’s crash behaviors are a sub-

set of the abstract crash behaviors. Both frameworks are

also careful to specify crashing and non-crashing behavior

separately; this is important since storage systems ought to

provide stronger guarantees for non-crashing execution (for

example, data buffered in memory might be lost on crash, but
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if the system does not crash reads should reflect all previous

writes).

Argosy incorporates ideas from both of these previous

lines of work, extending them to multiple layers with re-

covery, and with a fully machine-checked metatheory. In

contrast, both CHL and Yggdrasil assume a single, global

recovery procedure. Yxv6 consists of a number of verified

layers, but the end-to-end refinement is an informal theo-

rem, not a part of a proven metatheory. CHL does not use

refinement, so for modularity FSCQ specifications are by con-

vention structured into multiple abstractions. Refinement

makes this modularity explicit. In Argosy, recovery refine-

ment has the benefit that clients of an interface are also able

to use recovery procedures, even if that interface is itself

implemented using recovery; in FSCQ and Yxv6, clients of

the file system have no mechanism to prove crash safety of

their own recovery procedures.

Ernst et al. [11] also develop a theory of submachine refine-

ment for crashing and recovering systems, which they used

to verify their Flashix file system [10]. Their work has a sim-

ilar notion of a refinement between an abstract specification

and its implementation; their reduction from a white-box

semantics to a black-box semantics for submachines is analo-

gous to our notion of recovery refinement between interface

𝐿𝐴 and 𝐿𝐶 , as described in section 4. However, the metathe-

ory of submachine refinement only holds when a strong

property holds of the entire submachine: all operations must

be “crash neutral”, meaning there must be a way for every

operation to run such that its effects are obliterated by a

crash. This holds in the setting considered by the authors

because they permit all writes to storage to fail, but does not

support active recovery procedures that rely on writes, as

well as complicating higher-level APIs by always including

the possibility of failure. In contrast Argosy has a simpler

and more general presentation of refinement that handles

active recovery procedures.

Ntzik et al. [26] developed an extension to concurrent sepa-

ration logic to support reasoning about crashes in concurrent

systems. Similar to CHL’s idempotence principle, this logic

has a rule for verifying a recovery procedure which involves

showing that the precondition for recovery is an invariant

during recovery’s execution. However, as with CHL, this rule

applies to verifying a single recovery procedure, as opposed

to the multiple layers in Argosy.

The metatheory of Argosy is all accompanied by machine-

checked proofs, unlike Yggdrasil, submachine refinement,

and the logic of Ntzik et al. [26].

Concurrent notions of refinement There are systems like

RGSim [22] and CCAL [14] which support verification of

concurrent software using refinement between multiple im-

plementation layers. It might seem that crashes are simply a

special case of concurrency, since crashes interrupt threads

in a similar way to interleaving threads. However, recovery

requires new reasoning principles beyond what concurrency

frameworks provide. Crashes interrupt a thread with no pos-

sibility of resuming it, an unbounded number of crashes

can interrupt recovery itself before it completes, the defi-

nition of refinement should abstract away the behavior of

recovery, and crash-free executions should have a stronger

specification than post-crash behavior. No concurrent refine-

ment framework has direct support for these special aspects

of crashes and recovery. Indeed, these differences between

crashes and standard concurrency are what required Ntzik

et al. [26] to develop the extension to concurrent separation

logic described above. However, as mentioned, that logic is

for reasoning about a single layer of recovery, rather than

multiple layers. Adding crash safety support to a layered

concurrent refinement system like CCAL is an interesting

direction for future work, where Argosy’s ideas would be

informative.

Distributed Systems Refinement reasoning is widely used

for proving properties of distributed systems [15, 21, 25, 31].

Crashes occur in distributed systems, where nodes may sud-

denly fail. However, the existing work in this area does not

involve reasoning about storage systems running on individ-

ual nodes. Instead, these systems’ proofs assume correctness

of storage at each node and show consistency properties of

the aggregate system.

KleeneAlgebra forVerification Kleene algebra, especially

an extension called Kleene algebra with tests (KAT), has been

used for a variety of program verification tasks. Applications

range from proving the correctness of compiler optimiza-

tions [20], total correctness using refinement [30], and cache

coherence protocols [9], to more recently specifying and

analyzing software-defined networking systems [1].

Many extensions of Kleene algebra have been proposed,

including variants with types [19], temporal modalities [4],

probabilistic operators [12], monadic operators [13], and

with equational axioms [3]. These extensions often enjoy

completeness — any inequality that holds in the application

domain can be proven using the axioms of the algebraic

structure — and decidability — there is an algorithm to decide

if an inequality is true or false. These two properties together

make Kleene algebra attractive as a basis for automation, and

indeed this automation has even been verified in Coq [5, 27].

We do not develop an axiomatic variant of Kleene algebra,

and our variant embeds arbitrary Coq terms that certainly

make it undecidable; instead, we focus on only one model

and use Kleene algebra as a reference, manually proving any

desired property within the model. It would be interesting

to specify our variant axiomatically and try to identify a

decidable fragment that is sufficient for our needs; this could

automate our proofs considerably.
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3 Combinators for Crash Semantics
This section describes how we specify systems and program

in Argosy using combinators from Kleene algebra.

3.1 Overview
Argosy is centered around interfaces, which have a signature
specifying what operations programs can use and an oper-
ational semantics that specifies how the operations behave.

We’ll use 𝐿 to denote interfaces and Proc𝐿 for the type of

programs using operations from the interface 𝐿. An inter-

face’s signature determines what operations are valid, so the

𝐿 stands for language, though programs in any Proc𝐿 share

a common syntactic structure that gives control flow and

additional operations to compose operations as we describe

in more detail in subsection 3.2.

Interfaces include a semantics for each operation. Argosy

defines the semantics of whole programs, composing to-

gether each operation’s behavior appropriately for normal,

crash, and recovery execution. On top of this common struc-

ture, Argosy includes a metatheory for reasoning about re-

covery execution. The semantics and metatheory leverage

Kleene algebra to simplify both definitions and proofs; we

describe our specific use of Kleene algebra in subsection 3.3.

3.2 Interfaces
Formally, an interface 𝐿 in Argosy is a tuple (𝑂, 𝑆, step, , 𝑃),
where

• 𝑂 is the type of atomic operations the interface ex-

poses. Each operation is indexed by the type of values

it returns upon executing.𝑂 serves as the signature of

the interface.

• 𝑆 is the type of abstract state used to describe the

interface’s semantics.

• step is a transition relation specifying the semantics of

each operation. If 𝑜 is an operation of type 𝑂 (𝑇 ), the
relation step (𝑜) (𝑠, 𝑠 ′, 𝑣) holds if the operation 𝑜 can

transition from state 𝑠 to state 𝑠 ′ and return the value

𝑣 of type 𝑇 .

•  (pronounced “crash”) is a transition relation on pro-

gram states specifying the possible effects of a sys-

tem crash. For example, if the system state contained

volatile memory, then a  transition would erase this

memory.

• 𝑃 is a predicate on 𝑆 which holds for any valid initial

configuration of the system.

Example 1 (Transactional Disk API). Figure 2 gives the def-

inition of the transactional disk, the interface implemented

by the write-ahead logging scheme mentioned in the intro-

duction. The interface’s abstract state consists of a tuple

of disks of the form (𝑑𝑜𝑙𝑑 , 𝑑𝑛𝑒𝑤), where 𝑑𝑜𝑙𝑑 represents the

state of the disk before the current transaction began, and

𝑑𝑛𝑒𝑤 represents what the disk will become after the trans-

action is committed. We use 𝑠 .old for the first element of

the state 𝑠 and 𝑠 .new for the second element. Each disk is

modeled as a list of blocks. The initialization condition 𝑃

guarantees both disks are the same size, and all operations

preserve this invariant; the size operation returns this com-

mon length. The operation write(𝑎𝑑𝑑𝑟, 𝑏𝑙𝑘) sets the value
of 𝑎𝑑𝑑𝑟 to 𝑏𝑙𝑘 in 𝑑𝑛𝑒𝑤 if it succeeds. (Out-of-bounds writes

have no effect). However, it may also fail, in which case

the disks are unchanged — this corresponds to the situation

where the transaction log is full. On the other hand, the

operation read(𝑎𝑑𝑑𝑟 ) gets the value of 𝑎𝑑𝑑𝑟 from the old

disk, 𝑑𝑜𝑙𝑑 , so that it does not see the effects of uncommitted

writes. (Out-of-bounds reads return an arbitrary block). The

commit operation atomically sets the old disk to be equal to

the new disk. A system crash aborts the current transaction,

reverting the new disk to the old disk.

For each interface 𝐿, Argosy defines a type of programs

Proc𝐿 , which have a common syntactic structure that turn

the layer operations 𝑜 into a monad. We further index the

type Proc𝐿 by the type of values a program can return. Pro-

grams are generated by the following grammar:

𝑒 ::= call(𝑜) | ret 𝑣 | bind 𝑒 (𝜆x . 𝑒 ′)

A call to an operation 𝑜 from 𝑂 returning values of type

𝑇 is written call(𝑜), which is a program of type Proc𝐿 (𝑇 ).
Programs also include the monad operations ret and bind.
In our Coq implementation, bind 𝑒 𝑓 shallowly embeds a
Coq function 𝑓 of type 𝐵 → Proc𝐿 (𝐴); that is, programs

can include arbitrary Coq functions to sequence operations

together. Similarly, we can write any Coq expression 𝑣 in

ret 𝑣 . Note that this includes Coq if expressions and recursive
functions, which can be used to write loops. The only caveat

is that Coq recursion is always terminating, so unbounded

loops are not supported.

It is straightforward to lift the operation transition rela-

tion step (𝑜) to give a semantics for non-crashing executions

of programs expressed in the monad Proc𝐿 . However, doing
so for crashing executions, which run an associated recov-

ery procedure (which may itself crash), is more involved.

Although it is possible to do so directly by specifying an

inductively defined big-step relation, as in FSCQ [8], the re-

sulting definition can be difficult to understand and reason

about. Instead, Argosy expresses this relation using a variety

of relational combinators, which we explain next.

3.3 Kleene Algebra Combinators
We define a type for transition relations Rel(𝐴, 𝐵,𝑇 ) ≜ 𝐴→
𝐵 → 𝑇 → 𝑃𝑟𝑜𝑝 . For some relation 𝑟 : Rel(𝐴, 𝐵,𝑇 ), the
proposition 𝑟 (𝑎, 𝑏, 𝑣) holds when 𝑟 allows a transition from

state 𝑎 : 𝐴 to state 𝑏 : 𝐵, returning value 𝑣 : 𝑇 . We allow

transitions to change the type of state to support transitions

across layers, but often both state types are the same, such

as for step.
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𝑆 ≜ List Blocks × List Blocks
𝑂 ≜ write(𝑎𝑑𝑑𝑟, 𝑏𝑙𝑘) | read(𝑎𝑑𝑑𝑟 ) | size | commit

 ≜ 𝜆𝑠1, 𝑠2. 𝑠2 = (𝑠1.old, 𝑠1.old)
𝑃 ≜ 𝜆𝑠. 𝑠 .old = 𝑠 .new

step (𝑜) ≜ 𝜆𝑠1, 𝑠2, 𝑟 .


(
𝑠2 .old = 𝑠1 .old ∧ 𝑠2 .new = 𝑠1.new[𝑎 := 𝑏𝑙𝑘] ∧ 𝑟 = ⟨⟩

)
∨ (𝑠2 = 𝑠1 ∧ 𝑟 = failed) if 𝑜 = write(𝑎, 𝑏𝑙𝑘)

𝑠2 = 𝑠1 ∧ 𝑟 = 𝑠1 .old[𝑎] if 𝑜 = read(𝑎)
𝑠2 = (𝑠1.new, 𝑠1 .new) ∧ 𝑟 = ⟨⟩ if 𝑜 = commit
𝑠2 = 𝑠1 ∧ 𝑟 = length(𝑠1.old) if 𝑜 = size

Figure 2. Semantics of Transactional Disk Layer

We define equality, ordering (𝑝 ⊆ 𝑞), and operations for

non-deterministic choice (𝑝+𝑞), sequential composition (𝑝 ·𝑞),
and zero-or-more iterations (𝑝★):

𝑝 = 𝑞 ≜ ∀𝑎1, 𝑎2, 𝑡 . 𝑝 (𝑎1, 𝑎2, 𝑡) ↔ 𝑞(𝑎1, 𝑎2, 𝑡)
𝑝 ⊆ 𝑞 ≜ ∀𝑎1, 𝑎2, 𝑡 . 𝑝 (𝑎1, 𝑎2, 𝑡) → 𝑞(𝑎1, 𝑎2, 𝑡)
𝑝 + 𝑞 ≜ 𝜆𝑥,𝑦, 𝑡 . 𝑝 (𝑥,𝑦, 𝑡) ∨ 𝑞(𝑥,𝑦, 𝑡)
𝑝 · 𝑞 ≜ 𝜆𝑥,𝑦, 𝑡 . ∃𝑧, 𝑡 ′. 𝑝 (𝑥, 𝑧, 𝑡 ′) ∧ 𝑞(𝑧,𝑦, 𝑡)
𝑝★ ≜ 𝜆𝑥,𝑦, 𝑡 . ∃𝑛 : N. 𝑝𝑛 (𝑥,𝑦, 𝑡)

where 𝑝0 ≜ (𝜆𝑥,𝑦, 𝑡 . 𝑥 = 𝑦) and 𝑝𝑛+1 ≜ 𝑝 · 𝑝𝑛

These three operations appear in algebraic structures known

as Kleene algebras [18], which axiomatize the familiar prop-

erties of regular expressions. Our operations differ from

Kleene algebra, however, because they are typed, so that

certain operations are only defined when the types of the

operands match appropriately, which is not the case in a

Kleene algebra.
2
For example, our definition of 𝑝 · 𝑞 is well-

typed only when the type of 𝑝 is of the form Rel(𝐴, 𝐵,𝑇1)
and the type of 𝑞 is of the form Rel(𝐵,𝐶,𝑇2), i.e. the types
of states that 𝑝 transitions to must match the type of states

that 𝑞 transitions from. The type of the composition 𝑝 · 𝑞 is

then Rel(𝐴,𝐶,𝑇2).
Despite this difference from Kleene algebra, in our Coq

formalization we have proven that most of the axioms of

Kleene algebra hold for these combinators, as well as many

other derived rules, a selection of which we list in Figure 3.

This means that by defining our semantics using these com-

binators, we are able to take advantage of these equational

laws to simplify statements that we must prove.

Any relation of the form 𝐴→ 𝐵 → 𝑃𝑟𝑜𝑝 can be lifted to

an output-producing relation of type Rel(𝐴, 𝐵,Unit) which
always returns the unit value ⟨⟩. We will use this implicit

coercion throughout.

The sequential composition 𝑝 · 𝑞 above always runs the

transition 𝑞 regardless of what output value is returned by

𝑝 . We therefore define an additional combinator that allows

2
Typed variants of Kleene algebras have been studied by Kozen [19].

seq-monotonic

𝑝 ⊆ 𝑝 ′ 𝑞 ⊆ 𝑞′

𝑝 · 𝑞 ⊆ 𝑝 ′ · 𝑞′
sliding

𝑝 · (𝑞 · 𝑝)★ = (𝑝 · 𝑞)★ · 𝑝

denesting

(𝑝 + 𝑞)★ = 𝑝★ · (𝑞 · 𝑝★)★

simulation

𝑟 · 𝑝 ⊆ 𝑞 · 𝑟 =⇒ 𝑟 · 𝑝★ ⊆ 𝑞★ · 𝑟

Figure 3. Selected theorems from Kleene algebras that hold

in our model, when the statement type checks.

sequencing transitions based on intermediate output:

andThen 𝑝 𝑓 ≜ 𝜆x, y, t . ∃𝑧, 𝑡 ′. 𝑝 (𝑥, 𝑧, 𝑡 ′) ∧ 𝑓 (𝑡 ′) (𝑧,𝑦, 𝑡)

We also define an operator that returns a particular value,

leaving state unchanged:

ret 𝑣 ≜ 𝜆x, y, t . 𝑥 = 𝑦 ∧ 𝑡 = 𝑣

For a fixed type 𝐴 of state, Rel(𝐴,𝐴,−) forms a monad with

andThen and ret as the bind and unit. Note that we use ret
to mean both a pure program and a pure relation, which

are distinguishable from context (and closely related). There-

fore, we will use the traditional bind notation for andThen,
writing 𝑥 ← 𝑝 ; 𝑓 (𝑥) for andThen 𝑝 (𝜆x . 𝑓 (𝑥)). Similarly,

to improve clarity we will use 𝑝 ; 𝑞 instead of 𝑝 · 𝑞 when

mixing bind notation and sequential composition. We use

this notation even for sequencing relations with different

input and output state types, since in this case relations form

an instance of a more general structure called parameterised
monads [2].

3.4 Execution Semantics
These relation operations provide a convenient way to spec-

ify the crash and recovery behavior of programs. We start by

defining the crash-free execution of a program 𝑒 , written J𝑒K.
For a program 𝑒 of type Proc𝐿 (𝐴), its crash-free semantics

is a relation J𝑒K of type Rel(𝑆, 𝑆,𝐴) (recall 𝑆 is the state type
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for the interface 𝐿), defined inductively as:

Jcall(𝑜)K ≜ step (𝑜)
Jret 𝑣K ≜ ret 𝑣

Jbind 𝑒 𝑓 K ≜ 𝑥 ← J𝑒K ; J𝑓 (𝑥)K
This definition simply maps the free monad generated by the

operations of 𝐿 into the relation monad: binds and returns of

programs become the binds and returns of relations, while

operations are interpreted according to step (𝑜).
Next, we define a relation J𝑒K which describes a partial

execution of 𝑒 , interrupted by a crash that can occur non-

deterministically at any step. The definition of J𝑒K captures

the behavior of crashing programs after a crash but before

recovery take place. We ignore any partial return value of

such an interrupted program and just return ⟨⟩, but any state
modifications are preserved:

Jcall(𝑜)K ≜  +
(
step (𝑜) ·  

)
Jret 𝑣K ≜  

Jbind 𝑒 𝑓 K ≜ J𝑒K +
(
𝑥 ← J𝑒K ; J𝑓 (𝑥)K 

)
When executing an operation 𝑜 , the systemmay crash before

or after executing 𝑜 ; this means operations are atomic with

respect to crashes (modulo the effects of the subsequent

crash itself). When executing a pure program ret 𝑣 , a crash
will erase the return value of 𝑣 . For bind 𝑒 𝑓 , the system may

either, (1) crash while executing 𝑒 , or (2) finish executing 𝑒

but then crash while executing 𝑓 .

We also define recovery execution of a program 𝑒 with a

recovery procedure 𝑟 : Proc𝐿 (Unit), written as J𝑒 ⟲ 𝑟K. Note
that ⟲ is just part of the notation, not an operation of the

Proc𝐿 (𝐴) monad. Recovery execution involves a crashing

execution of 𝑒 , followed by potentially multiple crashing

executions of 𝑟 , and then a final complete execution of 𝑟 :

J𝑒 ⟲ 𝑟K ≜ J𝑒K · J𝑟K★ · J𝑟K

Giving concise definitions of crash and recovery semantics

like the above is important because these definitions are

trusted: if we omit some possible behavior of crashing from

our definitions, then the results we prove about crash safety

may not apply to real executing programs.

4 Recovery Refinement
This section discusses implementing interfaces, specifying

correctness of implementations using refinement, and the

metatheory Argosy provides for composing layers.

4.1 Implementations
An implementation of an interface is a program written

against the target, lower-level, concrete interface for each

primitive operation in the higher-level, abstract interface. A

software stack is then a sequence of implementations com-

posed together. In this section we’ll discuss implementing

𝐿𝐶

𝐿𝐴

𝑀

Figure 4. An implementation 𝑀 = (𝑐, 𝑟, 𝑖) of 𝐿𝐴 using 𝐿𝐶
provides a way to run abstract programs Proc𝐿𝐴 using a

concrete interface by compiling them with C𝑀 , running the

recovery procedure 𝑟 after each crash, and initializing the

interface with the procedure 𝑖 .

one interface in terms of another, returning to the issue of

composition in subsection 4.3. To improve readability, we

will color-code the abstract interface in blue and concrete

interface in red. More formally, an implementation of ab-

stract interface 𝐿𝐴 using concrete interface 𝐿𝐶 is a tuple

𝑀 = (𝑐, 𝑟, 𝑖), where
• 𝑐 is a function mapping each operation 𝑜 from 𝐿𝐴 with

return type𝑇 to a procedure Proc𝐿𝐶 (𝑇 ) implementing

the operation.

• 𝑟 is a designated recovery procedure of typeProc𝐿𝐶 (Unit).
• 𝑖 is an initialization procedure of type Proc𝐿𝐶 (Bool),
which returns a boolean indicating whether initializa-

tion succeeded.

We use the meta-variable𝑀 for implementations because

we think of them as modules implementing all of the opera-

tions of the signature 𝐿𝐴; see Figure 4 for an illustration of

how an implementation relates two layers. Given such an

implementation, we can “compile” programs written in 𝐿𝐴
into programs in 𝐿𝐶 :

C𝑀 (call(𝑜)) ≜ 𝑐 (𝑜)
C𝑀 (ret 𝑣) ≜ ret 𝑣

C𝑀 (bind 𝑒 ′ 𝑓 ) ≜ bind C𝑀 (𝑒 ′) (𝜆x . C𝑀 (𝑓 (𝑥)))

When compiling a recovery procedure 𝑟𝐴, we need to first

ensure that the implementation recovery procedure 𝑟 is run,

and then translate the operations in 𝑟𝐴:

C⟲
𝑀
(𝑟𝐴) ≜ bind 𝑟 (𝜆_. C𝑀 (𝑟𝐴))

Next, we want to show that these implementations are cor-

rect. Before giving our specific conditions for an implemen-

tation, we give a general definition for refinement between

relations. A refinement involves first picking an abstraction

relation 𝑅 : 𝑆𝐴 → 𝑆𝐶 → Unit→ 𝑃𝑟𝑜𝑝 that relates abstract

and concrete states (the unit value makes the abstraction rela-

tion an output-producing relation of type Rel(𝑆𝐴, 𝑆𝐶 ,Unit)).

Definition 2. For an implementation transition relation

𝑖𝑚𝑝𝑙 and a specification transition 𝑠𝑝𝑒𝑐 , we say the imple-

mentation refines the specification under the abstraction

relation 𝑅, written 𝑖𝑚𝑝𝑙 ⊑𝑅 𝑠𝑝𝑒𝑐 , if whenever 𝑅(𝑠𝐴, 𝑠) and
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𝑟𝑒𝑡𝑠𝑝𝑒𝑐

𝑟𝑒𝑡𝑖𝑚𝑝𝑙

=
𝑠𝑝𝑒𝑐

𝑖𝑚𝑝𝑙

𝑅 𝑅

Figure 5. Definition of the refinement 𝑖𝑚𝑝𝑙 ⊑𝑅 𝑠𝑝𝑒𝑐 .

Jcall(𝑜)K 

J𝑐 (𝑜)K 
𝑎𝑏𝑠𝑟 𝑎𝑏𝑠𝑟

J𝑟K

J𝑟K 

Figure 6. Abstraction for crash and recovery.

𝑖𝑚𝑝𝑙 (𝑠, 𝑠 ′, 𝑣) hold, there exists an 𝑠 ′
𝐴
such that 𝑠𝑝𝑒𝑐 (𝑠𝐴, 𝑠 ′𝐴, 𝑣)

and 𝑅(𝑠 ′
𝐴
, 𝑠 ′).

Figure 5 depicts this definition graphically. We can give an

equivalent, compact definition of refinement by using rela-

tion composition with a varying state type, as follows:

𝑖𝑚𝑝𝑙 ⊑𝑅 𝑠𝑝𝑒𝑐 ≜ (𝑅 ; 𝑖𝑚𝑝𝑙) ⊆
(
𝑣 ← 𝑠𝑝𝑒𝑐 ; 𝑅 ; ret 𝑣

)
Building on this abstract notion of refinement, we propose

recovery refinement as a simple set of conditions developers

can prove about an implementation to establish correctness.

Definition 3. We say that an implementation𝑀 = (𝑐, 𝑟, 𝑖)
is a recovery refinement of abstract interface 𝐿𝐴 = (𝑂𝐴, 𝑆𝐴,

step𝐴, 𝐴, 𝑃𝐴) into 𝐿𝐶 = (𝑂𝐶 , 𝑆𝐶 , step𝐶 , 𝐶 , 𝑃𝐶 ) if there ex-
ists an abstraction relation 𝑅 with the following four proper-

ties:

compile-exec: For all 𝑜 , J𝑐 (𝑜)K ⊑𝑅 Jcall(𝑜)K
recover-op: For all 𝑜 , J𝑐 (𝑜) ⟲ 𝑟K ⊑𝑅 Jcall(𝑜)K 
recover-ret: Jret ⟨⟩ ⟲ 𝑟K ⊑𝑅 Jret ⟨⟩K 
init-abs: For all 𝑠 and 𝑠 ′,

𝑃𝐶 (𝑠) ∧ J𝑖K(𝑠, 𝑠 ′, True) → ∃𝑠𝐴 . 𝑃𝐴 (𝑠𝐴) ∧ 𝑅(𝑠𝐴, 𝑠 ′)
Note that in this definition we folded some definitions to

give some intuition as to why these conditions make sense;

the conditions require that each operation is implemented

correctly, using recovery on the implementation side to trans-

parently achieve the abstract interface’s crash behavior  𝐴.
We can unfold some definitions to re-write the first three

conditions as follows:

compile-exec: For all 𝑜 , J𝑐 (𝑜)K ⊑𝑅 step𝐴 (𝑜)
recover-op: For all𝑜 , J𝑐 (𝑜) ⟲ 𝑟K ⊑𝑅  𝐴+

(
step𝐴 (𝑜) · 𝐴

)
recover-ret: Jret ⟨⟩ ⟲ 𝑟K ⊑𝑅  𝐴
The compile-exec obligation is straightforward and stan-

dard for forward simulation using an abstraction relation.

Recovery execution is more interesting, and requires two

obligations. recover-ret is somewhat of a technicality for

the case where the system crashes before any operations are

run, in which case the only impact of recovery should be an

abstract crash step.

recover-op is the main obligation of recovery refinement;

we illustrate the obligation (with J𝑐 (𝑜) ⟲ 𝑟K unfolded) in
Figure 6. Intuitively, the developer must show that recovery

correctly handles a crash during any operation. Recall that

the semantics of the abstract layer state that operations are

atomic with respect to crashes, so this means a crash during

𝑐 (𝑜) combined with recovery should simulate either just an

abstract crash step  𝐴 or the entire operation followed by a

crash step step (𝑜) ·  𝐴. Proving this obligation is non-trivial

since recovery execution internally loops for crashes during

recovery. We later show how we use Crash Hoare Logic’s

idempotence principle for recovery, which gives an inductive

invariant to prove recover-op.

The last obligation, init-abs, the only one for initialization,

is not stated in terms of refinement. The reason is that it

serves as the base case for simulation between the compiled

code and the specification: it constructs an abstract state

satisfying the abstraction relation, as long as initialization

succeeds. Once the abstraction relation is established, the rest

of the obligations apply, and because they are all refinements,

they maintain the abstraction relation with some abstract

state.

4.2 Correctness
We now show that recovery refinement is strong enough

to guarantee that the behavior of compiled programs is

preserved, even with intermediate crashes and recoveries.

Throughout this subsection, we’ll assume we have an im-

plementation 𝑀 = (𝑐, 𝑟, 𝑖) that is a recovery refinement of

interface 𝐿𝐴 into 𝐿𝐶 , where the associated abstraction rela-

tion is 𝑅, and will leave off the𝑀 subscript in C𝑀 (𝑝).
The obligations in recovery refinement only talk about

single operations from the abstract layer. We start by proving

that we can extend refinement to whole abstract programs

for crash-free execution (this is a standard forward simulation
[24]):

Theorem 4. For any program 𝑒 : Proc𝐴 (𝑇 ), its compiled

version refines the abstract program; that is, the following

holds:

JC(𝑒)K ⊑𝑅 J𝑒K
Proof Sketch. The proof is by induction over 𝑒 . The base cases

follow from the recovery refinement conditions. For the

bind 𝑒1 𝑒2 case, unfolding the definition of ⊑𝑅 , we have

as inductive hypotheses

𝑅 ; JC(𝑒1)K ⊆ 𝑣 ← J𝑒1K ; 𝑅 ; ret 𝑣

∀𝑣 . 𝑅 ; JC(𝑒2 (𝑣))K ⊆ 𝑣 ′← J𝑒2 (𝑣)K ; 𝑅 ; ret 𝑣 ′
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The proof proceeds by showing a sequence of inequalities:

𝑅 ; JC(bind 𝑒1 𝑒2)K
⊆ 𝑅 ;

(
𝑥 ← JC(𝑒1)K ; JC(𝑒2 (𝑥))K

)
⊆ 𝑥 ← J𝑒1K ; 𝑅 ; JC(𝑒2 (𝑥))K
⊆ 𝑥 ← J𝑒1K ; 𝑣 ← J𝑒2 (𝑥)K ; 𝑅 ; ret 𝑣

⊆ 𝑣 ← Jbind 𝑒1 𝑒2K ; 𝑅 ; ret 𝑣

□

There’s nothing too interesting in Theorem 4, except per-

haps that its proof follows from the algebraic structure of

transition relations. However, the analogous result for recov-

ery execution is the crux of the Argosy metatheory:

Theorem 5. For any program 𝑝 : Proc𝐴 (𝑇 ) and recovery

procedure 𝑟𝐴 : Proc𝐴 (Unit), the following refinement holds:

JC(𝑝) ⟲ C⟲(𝑟𝐴)K ⊑𝑅 J𝑝 ⟲ 𝑟𝐴K

What does this theorem accomplish? First, recall that

C⟲ (𝑟𝐴) = bind 𝑟 C(𝑟𝐴); it includes the layer recovery pro-

cedure 𝑟 in addition to the abstract recovery procedure 𝑟𝐴.

The idea is that running this 𝑟 after a  𝐶 is analogous to a

 𝐴 transition, at which point it makes sense to run C(𝑟𝑎).
The theorem re-arranges the left-hand side to prove this

end-to-end result, including a high-level recovery procedure,

from the per-operation obligation recover-ret.

Proof Sketch. The key part of the proof is to decompose run-

ning the recovery C⟲ (𝑟𝐴) into first running 𝑟 , and then

running C(𝑟𝐴) with 𝑟 as its “sub-recovery” procedure. That
is, we first prove:

JC⟲ (𝑟𝐴)K ★ · JC⟲(𝑟𝐴)K
= J𝑟K ★ · J𝑟K · JC(𝑟𝐴) ⟲ 𝑟K★ · JC(𝑟𝐴)K

This equivalence is shown entirely using Kleene algebra

identities. Once we have this equivalence, the rest of the

proof is intuitive. First, we have that 𝑟 recovers the system

(after crashing some number of times) to a state where we

can execute other 𝐿𝐶 programs. Then, we can reason about

JC(𝑟𝐴) ⟲ 𝑟K as a crashing program in 𝐿𝐶 , and show that it

refines J𝑟𝐴K ; this follows by using the simulation theorem

from Kleene algebra, which states that 𝑝 ⊑𝑅 𝑞 implies 𝑝★ ⊑𝑅
𝑞★. Finally, JC(𝑟𝐴)K is a crash-free execution, so it refines

J𝑟𝐴K by Theorem 4. □

These results show that abstraction is preserved across a

single program’s complete execution or crash and recovery.

What about an entire interaction with the system, with mul-

tiple programs, each of which may crash and recover? We

extend the single-execution correctness result of Theorem 4

to interactions represented as a sequence of programs and a

user-specified recovery procedure, all written at the abstract

layer. As before, the intuitive correctness definition is that

the behavior of this abstract sequence is preserved by compi-

lation. Formally, we model such a sequence as an inductive

type ProcSeq generated by:

• seqCons 𝑒 𝑓 , where 𝑒 has type Proc𝐿 (𝐴) for some 𝐴

and is the next program to run, while 𝑓 : Option(𝐴) →
ProcSeq(𝑅) determines what to run afterward.

• seqNil, the empty list.

To define execution of such a sequence, we first define a

helper functionwhich non-deterministically decideswhether

to execute or crash a program, and tags the result:

exec_or_rexec(𝑒, 𝑟 ) ≜ (𝑥 ← J𝑒K ; ret some(𝑥))
+ (𝑥 ← J𝑒 ⟲ 𝑟K ; ret none)

Execution of a sequence 𝑝𝑠 with recovery procedure 𝑟 is

defined by

execSeq(seqNil, 𝑟 ) ≜ ret nil

execSeq(seqCons 𝑒 𝑓 , 𝑟 ) ≜
𝑥 ← exec_or_rexec(𝑒, 𝑟 ) ;
𝑙 ← execSeq(𝑓 (𝑥), 𝑟 ) ; ret (𝑥 :: 𝑙)

This definition recursively executes or crashes each program

in the sequence, passing the resulting values to a function

that decides which to execute next. All of the intermediate

results are accumulated in a heterogeneous list, which is

returned at the end. The final list represents what the user

may observe as they execute the whole sequence.

We then have a function compileSeq𝑀 (𝑝𝑠) that compiles

the programs in a sequence 𝑝𝑠 . Given 𝑝𝑠 and a user-specified

recovery procedure 𝑟𝐴, we define a complete execution of

the compiled program by the relation

execCompile𝑀 (𝑝𝑠, 𝑟𝐴) ≜
𝑥 ← J𝑖K ;
if 𝑥 then

𝑣 ← execSeq(compileSeq𝑀 (𝑝𝑠), C
⟲
𝑀
(𝑟𝐴)) ;

ret some(𝑣)
else (ret none)

which models running the initialization procedure, and if

it succeeds, running the compiled sequence. For simplicity

we assume here that the program does not crash during

initialization.

Finally, we will want to consider all possible outputs of

programswhen run from initialized states satisfying 𝑃 . Given

𝑞 : Rel(𝑆, 𝑆,𝐴), we define the predicate
output(𝑞) ≜ 𝜆𝑣. ∃𝑠1, 𝑠2. 𝑃 (𝑠1) ∧ 𝑞(𝑠1, 𝑠2, 𝑣)

The following theorem shows that compilation using a

recovery refinement𝑀 preserves an entire interaction con-

sisting of a sequence of programs:

Theorem 6 (Correctness for sequences).
If some(𝑣) ∈ output(execCompile𝑀 (𝑝𝑠, 𝑟𝐴)), then
𝑣 ∈ output(execSeq(𝑝𝑠, 𝑟𝐴)).
Proof Sketch. If some(𝑣) is in the output of the compiled

program, then initialization succeeded for that execution.
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init-abs shows that the abstraction holds after initialization.

We then proceed by induction on 𝑝𝑠 . Based on whether the

next program in the sequence executes normally or crashes,

we use one of the two preceding theorems to show that

abstraction is preserved. This then guarantees that the return

values for each intermediate compiled program are equal to

some possible return value for the original. □

Theorem 6 only guarantees that the return value of the

executable code sequence matches some expected behavior

from the abstract program sequence. The theorem is stronger

than it may at first appear since these abstract programs

can embed arbitrary Gallina functions to inspect intermedi-

ate results, and can maintain state between functions using

the general bind 𝑝 𝑓 constructor common to all languages

Proc𝐿𝐴 . For example, 𝑝𝑠 could track all intermediate return

values of 𝐿𝐴’s operations and include them as part of the

return value 𝑣 .

Return values can capture all internal behavior but not any

additional externally visible behavior emitted by operations;

for example, we assume that clients of a file systemwritten in

Argosy have no way of directly observing low-level storage

writes. Indeed, this low-level behavior would not even be

part of the file system’s specification.

4.3 Composition
The workflow for the developer is to construct a refinement

of some intermediate abstraction 𝐿𝐼 into 𝐿𝐶 , and then to use

the intermediate abstraction and prove a refinement of 𝐿𝐴
into 𝐿𝐼 , possibly repeating this several times with multiple

intermediate interfaces — one verified file system, FSCQ,

describes a stack with seven layers, and another, Yggdrasil,

has five. In order to get a complete system, the developer

needs to compose these recovery refinements and compile

across the intermediate layer of abstraction.

The following theorem lets us combine two recovery re-

finements:

Theorem 7 (Composition). If 𝑀1 = (𝑐1, 𝑟1, 𝑖1) is a recovery
refinement of 𝐿𝐴 into 𝐿𝐼 , and 𝑀2 = (𝑐2, 𝑟2, 𝑖2) is a recovery
refinement of 𝐿𝐼 into 𝐿𝐶 , then the following implementation

is a recovery refinement of 𝐿𝐴 into 𝐿𝐶 :

𝑐 = 𝜆𝑜. C𝑀2
(𝑐1 (𝑜))

𝑟 = (𝑥 ← 𝑟2 ; C𝑀2
(𝑟1))

𝑖 = (𝑥 ← 𝑖2 ; if 𝑥 then C𝑀2
(𝑖1) else false)

We write𝑀2 ◦ 𝑀1 for this composed implementation.

The proof of this theorem has two main ideas: using

Kleene algebra laws (specifically denesting) to re-arrange

the execution of the nested recovery procedure, and apply-

ing Theorem 5 on the recovery procedure compiled to 𝐿𝐼 .

Of course recovery refinement also requires proving that

normal execution is preserved, but this is a comparatively

simple application of Theorem 4.

Note that because the composed implementation is a re-

covery refinement, Theorem 6 above applies to the composi-

tion𝑀2 ◦ 𝑀1 and the developer has a proof of correctness for

the entire stack, built from modular proofs that only reason

about adjacent interfaces.

5 Embedding Crash Hoare Logic
So far we’ve described recovery refinement, but how does a

user prove that an implementation is a recovery refinement?

We have designed Argosy to separate out the metatheory of

recovery refinement from the reasoning about implementa-

tion behavior needed to prove refinement. To address this

latter program-specific reasoning we implemented Crash

Hoare Logic (CHL), the logic used to verify the FSCQ file

system [8]. We prove all the rules of CHL as theorems in our

Coq development. We review the basics of CHL and then

describe what its implementation in Argosy looks like.

CHL is a variant of Hoare logic which features a judgment

{𝑃 } 𝑒 ⟲ 𝑟 {𝑄}{𝑄𝑅}. This recovery specification of procedure

𝑒 recovering with 𝑟 has three parts: 𝑃 and 𝑄 are the familiar

pre- and postcondition from Hoare logic, while 𝑄𝑅 is a new

recovery postcondition. The interpretation of this judgment

is that if 𝑒 runs in a state 𝑠1 satisfying 𝑃 , then:

• If the system does not crash, 𝑒 will terminate and re-

turn some value 𝑣 in a final state 𝑠2 such that𝑄 (𝑠1, 𝑠2, 𝑣)
holds.

• If the system crashes and runs 𝑟 for recovery, then

𝑟 returns some value 𝑣 in a final state 𝑠2 such that

𝑄𝑅 (𝑠1, 𝑠2, 𝑣) holds.
The postconditions are full relations over the input state, out-

put state, and return value, instead of the traditional version

of Hoare logic in which they do not depend on the initial

state. While not strictly necessary, we use this formulation

since it often makes writing the postcondition and recovery

postcondition more convenient.

This judgment can be encoded straightforwardly using

the Kleene algebra semantics.
3
We first recast the pre- and

postconditions as relations over pairs of an initial state and

a final state:

specRel(𝑃,𝑄) ≜ 𝜆𝑠1, 𝑠2, 𝑣 . 𝑃 (𝑠1) → 𝑄 (𝑠1, 𝑠2, 𝑣)

Then the recovery quadruple is defined by:

{𝑃 } 𝑒 ⟲ 𝑟 {𝑄}{𝑄𝑅} ≜ (J𝑒K ⊆ specRel(𝑃,𝑄))
∧ (J𝑒 ⟲ 𝑟K ⊆ specRel(𝑃,𝑄𝑅))

Once we have proven recovery specs for the implemen-

tations of each operation in an interface, proving recovery

refinement is straightforward: we just need to show that the

3
In their use of CHL to verify FSCQ, Chen et al. [8] used a shallow embed-

ding of separation logic to be able to write assertions using the separating

conjunction ∗. We have not needed to use these connectives in our examples,

but a similar shallow embedding could be used.
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abstraction relation implies the precondition of each opera-

tion’s spec, and conversely, that the post/recovery conditions

imply the abstraction relation for the updated states. Specif-

ically, for every operation 𝑜 in the abstract interface, we

need to show its implementation 𝑐 (𝑜) satisfies the following
specification, using 𝑅 for the abstraction relation:

∀𝑠𝐴 . {𝜆𝑠. 𝑅(𝑠, 𝑠𝐴)}
𝑐 (𝑜) ⟲ 𝑟

{𝜆s, s′, v. ∃𝑠 ′𝐴 . 𝑅(𝑠 ′, 𝑠 ′𝐴) ∧ step (𝑜) (𝑠𝐴, 𝑠 ′𝐴, 𝑣)}
{𝜆s, s′, _. ∃𝑠 ′𝐴 . 𝑅(𝑠 ′, 𝑠 ′𝐴) ∧(

 𝐴 (𝑠𝐴, 𝑠 ′𝐴) ∨ (step (𝑜) ·  𝐴) (𝑠𝐴, 𝑠 ′𝐴)
)
}

This is simply a slight rephrasing of recover-op and recover-

ret from the definition of recovery refinement.

Proving recovery specs directly is hard, since they mix

reasoning about the behavior of the program 𝑒 and the recov-

ery procedure 𝑟 . Instead, CHL relies on another judgment, a

crash spec, of the form {𝑃 } 𝑒 {𝑄}{𝑄 }. Crash specs have the

same interpretation for the precondition 𝑃 and postcondition

𝑄 . However, instead of the recovery condition, they have a

crash condition𝑄 , where if 𝑒 crashes in state 𝑠2 at any point

during its execution starting from 𝑠1 (that is, if the program

halts followed by the effects of a crash  ), then 𝑄 (𝑠1, 𝑠2, ⟨⟩)
must hold.

4
The crash specification is defined as

{𝑃 } 𝑒 {𝑄}{𝑄 } ≜ (J𝑒K ⊆ specRel(𝑃,𝑄))
∧ (J𝑒K ⊆ specRel(𝑃,𝑄 ))

Rules for proving crash specs are shown in Figure 7. The

rule prim-op lets us deduce specs for primitive operations.

Its reading is straightforward: if the operation 𝑜 executed

normally, then the relation between the starting and end-

ing states is precisely described by step (𝑜), so this becomes

the postcondition. Otherwise, if there was a crash, it either

happened before or after step (𝑜) finished, so the crash condi-
tion is the non-deterministic choice between  immediately

occurring or taking place after 𝑜 runs. We chain together

crash specs with the rule seqencing, a monadic variant of

the usual Hoare sequencing rule. Finally, we have the rule

conseqence, which as usual lets us strengthen preconditions

and weaken postconditions, while also weakening the crash

condition.

Using these rules, we can first derive crash specs for pro-

grams and the recovery procedure itself. CHL then provides

the following idempotence rule, which we use to derive a

recovery spec from a crash spec:

idempotence

{𝑃 } 𝑒 {𝑄}{𝑄 }
{𝑃 ′} 𝑟 {𝑆}{𝑄 } ∀𝑠1, 𝑠2 . 𝑄 (𝑠1, 𝑠2, ⟨⟩) → 𝑃 ′(𝑠2)

{𝑃 } 𝑒 ⟲ 𝑟 {𝑄}{𝑆}
4
The FSCQ paper [8] and corresponding thesis [6] also use the term “crash

spec”, but they use the term to refer to an invariant that holds if the program

halts at any time, not incorporating the effect of a crash.

The premises of this rule ensure that the crash conditions

for 𝑒 and 𝑟 followed by a crash must imply the precondition

for 𝑟 . This is necessary because 𝑟 may itself crash. Then, in

the derived recovery spec, the postcondition comes from the

postcondition of 𝑒 , and the recovery condition is 𝑟 ’s postcon-

dition. Note that the crash condition is this specification is

an invariant over crashes during recovery. However, when

applying CHL to recovery refinement, different operations

can use different specifications for the recovery procedure,

and thus can use different invariants (our examples do indeed

exploit this property).

Although this rule captures the main principle behind

going from crash to recovery specs, it is not convenient to

use as stated. The reason is that often the crash spec one

proves about the recovery procedure is of the form:

∀𝑎. {𝑃 (𝑎)} 𝑟 {𝑄 (𝑎)}{𝑄 (𝑎)}
That is, we quantify at the meta-level over some variable 𝑎

which all assertions in the Hoare quadruple depend upon.

Often, this 𝑎 represents state from an abstract interface, and

then the assertions in the quadruple can state how the effects

of 𝑟 correspond to operations applied to this abstract state.

The problem that arises whenwe try to use the rule idempo-

tencewith such a specification is that we would need to pick

a single fixed value to instantiate 𝑎 with. However, this does

not work: the abstract state we are simulating may change

as a result of a crash, meaning that the crash condition of the

recovery procedure does not imply the precondition with

the same choice for 𝑎.

To resolve this issue, we prove the following stronger rule:

idempotence-ghost

{𝑃 } 𝑒 {𝑄}{𝑄 } (∀𝑎. {𝑃 ′(𝑎)} 𝑟 {𝑆 (𝑎)}{𝑄 ′ (𝑎)})
∀𝑠1, 𝑠2. 𝑄 (𝑠1, 𝑠2, ⟨⟩) → ∃𝑎. 𝑃 ′(𝑎, 𝑠2)

∀𝑠1, 𝑠2, 𝑎.𝑄 ′ (𝑎) (𝑠1, 𝑠2, ⟨⟩) → ∃𝑎
′. 𝑃 ′(𝑎′, 𝑠2)

{𝑃 } 𝑒 ⟲ 𝑟 {𝑄}{𝜆s1, s2 . ∃𝑎. 𝑆 (𝑎) (𝑠1, 𝑠2)}
In this version, the 𝑎 we quantify over at the meta (Coq) level

is a kind of auxiliary “ghost-state”, and it may change each

time recovery crashes: from the crash condition followed by

a crash stepwe only need to show that there exists some 𝑎′ for
which the preconditionwill hold. Below the line, the recovery

condition then holds for some existentially quantified 𝑎′.
As we’ll see in the examples in section 6, we use this 𝑎 to

encode a kind of state transition system that recovery moves

through.

CHL does not have a sequencing rule to extend a recovery

spec {𝑃 } 𝑒 ⟲ 𝑟 {𝑄}{𝑄𝑅} with an additional recovery proce-

dure 𝑟 ′. The only option in CHL is to re-prove the premises of

the idempotence rule with the extended recovery procedure

_← 𝑟 ; 𝑟 ′. This is the limitation that makes it infeasible to

reason about layered recovery with CHL alone. However,

this is no longer a problem in the context of Argosy, since

we only use CHL to prove recovery refinement for a single

implementation at a time, and then use Argosy’s general
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prim-op

{True} 𝑜 {step (𝑜)}{ + step (𝑜) ·  }
ret

{True} ret 𝑣 {ret 𝑣}{ret ⟨⟩}

seqencing

{𝑃 } 𝑒 {𝑆}{𝑄 } (∀𝑠1, 𝑠2, 𝑣 . 𝑆 (𝑠1, 𝑠2, 𝑣) → 𝑆 ′(𝑠2)) (∀𝑣 . {𝑆 ′} 𝑓 (𝑣) {𝑄}{𝑄 })
{𝑃 } 𝑥 ← 𝑒 ; 𝑓 (𝑥) {𝑄}{𝑄 }

conseqence

𝑃 → 𝑃 ′ 𝑄 ′→ 𝑄 𝑄 ′ → 𝑄 {𝑃 ′} 𝑒 {𝑄 ′}{𝑄 ′ }
{𝑃 } 𝑒 {𝑄}{𝑄 }

Figure 7. Inference rules for crash specs.

transitivity theorems to reason about a whole stack of com-

posed implementations.

6 Examples
We now return to the motivating example from the introduc-

tion, and describe recovery-refinement proofs for the disk

replication and write-ahead logging implementations. These

examples are intended to illustrate how CHL enables recov-

ery reasoning within Argosy for individual refinements. The

logging design we use is comparable to the log used in the

original FSCQ paper [8] and in Yggdrasil [28], although it is

simplified compared to the followup system DFSCQ [7] or

the journaling in Linux’s ext4 file system. We believe both

implementations demonstrate the main issues that arise in

crash and recovery reasoning and that Argosy could be used

to verify designs that give better performance with more

engineering work.

6.1 Disk Replication
Disk replication implements an interface exposing a robust

one-disk single disk on top of two unreliable disks. We as-

sume that at least one of the two disks in the system is

functional, so the state in the two-disk interface consists of

either two active disks, written TwoDisks(𝑑0, 𝑑1) or a sin-

gle disk tagged with an identifier 𝑖𝑑 , written OneDisk(𝑖𝑑, 𝑑).
The interface provides operations to read, write, and get the

size of a disk, all taking a disk 𝑖𝑑 as a parameter. Just before

each operation, if both disks are active, one of them may

fail (this is independent from system crashes, which halt

execution and trigger recovery). The system may thus tran-

sition from TwoDisks(𝑑0, 𝑑1) to OneDisk(𝑖𝑑, 𝑑𝑖𝑑 ), at which
point the system will continue to run with a single disk. If

an operation attempts to access a failed disk, then it returns

an error code.

The robust one-disk interface that replication implements

is straightforward. The state consists of a single disk, again

modeled as a list of blocks. Crashes halt system execution but

leave the disk unchanged. This interface provides the same

read, write, and size operations, without a disk 𝑖𝑑 parameter.

Wewill refer to the implementations of these operations in

the two-disk interface as Write, Read, and Size, respectively.
These implementations are simple. Write(𝑎, 𝑏𝑙𝑘) writes 𝑏𝑙𝑘
to address 𝑎 in both of the disks. Read(𝑎) first tries to read

𝑎 in disk 0. If this succeeds, it returns the corresponding

value, and otherwise it reads and returns 𝑎 from disk 1. Size
similarly tries to query the size of disk 0, and then tries disk

1 if necessary. The initialization procedure checks that the

two disks are the same size, and zeros out all blocks in both

of them.

Setting aside crashes momentarily, why does this correctly

implement the one-disk API? The relationship is captured by

a simple abstraction relation maintained by replication: the

two disks, if they are both active, are equal to some disk 𝑑

representing the state of the one-disk interface. To state this

more formally, we introduce some notation to give the status

of the disk(s). Given a two-disk state 𝑠 , we define 𝑠
?

= (𝑑0, 𝑑1)
as follows:

𝑠
?

= (𝑑0, 𝑑1) ≜


𝑑0 = 𝑑 ′

0
∧ 𝑑1 = 𝑑 ′

1
if 𝑠 = TwoDisks(𝑑 ′

0
, 𝑑 ′

1
)

𝑑0 = 𝑑 if 𝑠 = OneDisk(0, 𝑑)
𝑑1 = 𝑑 if 𝑠 = OneDisk(1, 𝑑)

Then the abstraction relation maintained by the implemen-

tation is 𝑎𝑏𝑠𝑟 ≜ 𝜆𝑠, 𝑑. 𝑠
?

= (𝑑, 𝑑).
However, this abstraction is broken if the system crashes

in the middle of a write, when only the first disk has been

updated. The situation is summarized by the halt spec we

proved for Write, which is shown in Figure 8. The precon-

dition assumes the abstraction relation holds between the

initial state and some disk 𝑑 . The halt condition has three

cases, corresponding to a crash before the entire operation,

after the entire operation, and in the middle of Write.
The recovery procedure Recv restores the abstraction rela-

tion in a situation like this. It works by iterating through all

addresses, copying from disk 0 to disk 1. If it notices that one

of the disks has failed (because an operation returns an error

code), it stops. We have proven two specifications for this

procedure, shown in Figure 9, because the effects of recov-

ery depend on whether the disks were originally the same
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{𝜆𝑠1. 𝑠1 ?

= (𝑑,𝑑)} Write(𝑎, 𝑏𝑙𝑘)

{𝜆𝑠1, 𝑠2, 𝑟 . 𝑠2 ?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑 [𝑎 := 𝑏𝑙𝑘])}

{𝜆𝑠1, 𝑠2, 𝑟 . 𝑠2 ?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑 [𝑎 := 𝑏𝑙𝑘]) ∨ 𝑠2
?

= (𝑑, 𝑑)

∨ 𝑠2
?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑) }
Figure 8. Halt spec for replicated disk writes. (𝑑 is univer-

sally quantified.)

Synchronized Spec:

{𝜆𝑠1. 𝑠1 ?

= (𝑑,𝑑)} Recv
{𝜆𝑠1, 𝑠2, 𝑟 . 𝑠2 ?

= (𝑑,𝑑)}{𝜆𝑠1, 𝑠2, 𝑟 . 𝑠2 ?

= (𝑑,𝑑)}
Out-of-sync Spec:

{𝜆𝑠1. 𝑠1 ?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑)} Recv
{𝜆𝑠1, 𝑠2, 𝑟 . 𝑠2 ?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑 [𝑎 := 𝑏𝑙𝑘]) ∨ 𝑠2
?

= (𝑑, 𝑑)}

{𝜆𝑠1, 𝑠2, 𝑟 . 𝑠2 ?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑 [𝑎 := 𝑏𝑙𝑘]) ∨ 𝑠2
?

= (𝑑, 𝑑)

∨ 𝑠2
?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑) }
Figure 9. Halt specs for replicated disk recovery.

(“synchronized”) or different (“out-of-sync”). In the former

case, the disks stay the same in both the postcondition and

the halt condition. In the latter case, where disk 0 contains

an additional write setting 𝑎 to 𝑏𝑙𝑘 in 𝑑 , the final state can

vary. In the postcondition, either the write to 𝑎 is copied

to disk 1 or disk 1 fails, so that the abstraction relation is

restored with 𝑠2
?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑 [𝑎 := 𝑏𝑙𝑘]); or disk 0 itself

fails before the write is copied, in which case the abstraction

relation holds with disk 𝑑 instead. When this happens, it is

as if the entire high-level write did not take place. The halt

condition contains cases for these two scenarios, but also

one where the disks remain out-of-sync.

It is helpful to visualize what can happen during recovery

with the following state transition system:

(𝑑, 𝑑)

(𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑)

(𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑 [𝑎 := 𝑏𝑙𝑘])

syncout-of-sync

sync-write

Each node is labeled with what 𝑠 is
?

= related to. If the disks

are synchronized (sync and sync-write states), then they

stay so. However, if they are not (out-of-sync) then the

system can ultimately transition to either, or stay in the

middle state while repeatedly crashing.

commit?

length 𝑛
256

addrs

𝑏1 . . . 𝑏256 . . .

Physical Layout

Logical Layout

(commit?, (𝑎1, 𝑏1) :: . . . :: (𝑎𝑛, 𝑏𝑛) :: nil, 𝑑𝑜𝑙𝑑 )

header descrip. log values data region

Figure 10. Physical and logical layout with write-ahead log-

ging.

We use this state transition system to establish the premises

of idempotence-ghost, in order to prove a recovery spec for

Write. The ghost state 𝑎 we use in the rule is the state of a

node in the above transition diagram, and on the basis of

that state we use either the synchronized spec or out-of-sync

spec for recovery. We obtain the following recovery spec for

Write:

{𝜆𝑠1. 𝑠1 ?

= (𝑑,𝑑)}
Write(𝑎, 𝑏𝑙𝑘) ⟲ Recv

{𝜆𝑠1, 𝑠2, 𝑟 . 𝑠2 ?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑 [𝑎 := 𝑏𝑙𝑘])}
{𝜆𝑠1, 𝑠2, 𝑟 . 𝑠2 ?

= (𝑑 [𝑎 := 𝑏𝑙𝑘], 𝑑 [𝑎 := 𝑏𝑙𝑘]) ∨ 𝑠2
?

= (𝑑, 𝑑)}
The disjuncts of the recovery condition show that the ab-

straction relation holds for some appropriate disk, in which

the write either did nothing or succeeded atomically, which

is precisely what we need to establish the obligations of re-

covery refinement for this operation. We reason about the

other operations similarly.

6.2 Write-Ahead Logging
Write-ahead logging implements the transactional disk in-

terface described in Figure 2 on top of the one-disk interface.

Recall that in the transactional interface, the state is a pair of

disks (𝑑𝑜𝑙𝑑 , 𝑑𝑛𝑒𝑤)where𝑑𝑜𝑙𝑑 represents the persistent state of
the disk before the current transaction, and 𝑑𝑛𝑒𝑤 represents

what the state will be if the current transaction is committed.

Reads return values from 𝑑𝑜𝑙𝑑 , while writes modify 𝑑𝑛𝑒𝑤 . The

commit operation replaces 𝑑𝑜𝑙𝑑 with the current 𝑑𝑛𝑒𝑤 , and

crashes do the opposite.

To implement this interface on top of a single disk, we

use write-ahead logging. The system uses a region of disk to

keep track of the current transaction in the form of a log. The

log holds the writes in 𝑑𝑛𝑒𝑤 that are not yet committed to the

data region 𝑑𝑜𝑙𝑑 , which is represented by the rest of the disk.

The transaction is stored separately so that upon crash the

system can revert the disk by ignoring the pending writes

and clearing the log. Committing these writes needs to be

atomic even if the system crashes, so the commit operation

first sets a commit flag to true on disk and then applies the

writes in the log; if the system crashes in the middle, it checks
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the commit flag and if it is true, re-applies the log. Crucially,

re-applying parts of the log is equivalent to applying once,

since these are overwrites of disk blocks.

The logical state tracked is a tuple (𝑏, 𝑙𝑜𝑔, 𝑑) where 𝑏 is

a boolean commit flag, 𝑙𝑜𝑔 is a list of address-value pairs

representing the current transaction, and 𝑑 is the data re-

gion. Given a physical state (a disk) 𝑠 , we write 𝑠 ∼ (𝑏, 𝑙𝑜𝑔, 𝑑)
to mean that 𝑠 decodes into that tuple. The physical rep-

resentation that encodes the logical state into disk blocks

is depicted in Figure 10. The log header contains both the

commit flag and the logical length of the log. The data in

the log is stored in two fixed-size regions: a descriptor block

encodes addresses and a log value region of 256 blocks holds

the data for the current transaction’s writes. The length of

the log in the header determines how many of these address-

value pairs are part of the log, while the rest are ignored. For

simplicity we use a single descriptor block for addresses, and

since we use 1KB blocks and 32-bit values for addresses, this

limits transactions to 256 writes.

The implementation of read is straightforward, as it sim-

ply accesses the corresponding block in the data region, after

first shifting the address by the size of the log. The imple-

mentation of write(𝑎, 𝑏𝑙𝑘) first accesses the header block to

figure out how long the current transaction is. If there is no

space left in the log, it returns an error code. Otherwise, it

writes back the header block with the length incremented

by 1, then updates the descriptor block to store 𝑎, and fi-

nally writes 𝑏𝑙𝑘 to the corresponding slot in the log value

region. The commit implementation first reads the header

block and writes it back with the committed bit set to true. It

then calls a function doApply which actually applies all the

operations: it loads the descriptor block to get the addresses

for the writes that need to be applied, then iterates through

each operation in the log and performs the corresponding

write. Once all operations have been done, or if the commit

flag was initially false, it writes back the header block setting

the commit flag to false and the length to 0.

The abstraction relation is:

𝑎𝑏𝑠𝑟 ≜ 𝜆𝑠, (𝑑𝑜𝑙𝑑 , 𝑑𝑛𝑒𝑤). ∃𝑙𝑜𝑔. 𝑠 ∼ (False, 𝑙𝑜𝑔, 𝑑𝑜𝑙𝑑 )
∧ logApply(𝑙𝑜𝑔, 𝑑𝑜𝑙𝑑 ) = 𝑑𝑛𝑒𝑤

where logApply is just a pure Coq function which represents

the effects of applying each operation in the log to a disk.

The abstraction relation states the current transaction is

uncommitted, and that the new disk is exactly what the

logical disk would contain if the log were applied. The halt

specs for the read and write operations are straightforward.

For instance, the spec for write says that it appends an entry

to the log list.

The recovery procedure checks if the log is committed,

and if so, calls the doApply subroutine used to finish a com-

mit. Much of the time the transaction is uncommitted and in

case of a crash the commit flag is false, so to recover doApply
simply clears the log by setting its length to 0. This reverts

Two disks

Single disk

Transactional API

𝑀rep (§6.1)

𝑀log (§6.2)

CHL

𝑀rep ◦ 𝑀log
(Thm. 7)

Correctness

(Thm. 6)

Figure 11. The verified composed stack. Each layer is inde-

pendently verified using CHL as described in each imple-

mentation’s subsection, then the two recovery refinements

are composed to produce an overall correctness theorem.

𝑑𝑛𝑒𝑤 to 𝑑𝑜𝑙𝑑 , which is the specified crash behavior in the

transactional disk API. The interesting case is when a crash

occurs during a commit or recovery itself when the transac-

tion in the log is committed but not yet applied. To carry out

the idempotence proof, it’s again helpful to visualize things

as a state transition system. Suppose that before the crash,

the last time the abstraction relation held, the abstract state

was (𝑑𝑜𝑙𝑑 , 𝑑𝑛𝑒𝑤), and the logical list representing the log was
𝑙𝑜𝑔. Then, we have the following states and transitions:

𝑠 ∼ (False, 𝑙𝑜𝑔, 𝑑𝑜𝑙𝑑 ) 𝑠 ∼ (False, nil, 𝑑𝑜𝑙𝑑 )

∃𝑑. 𝑠 ∼ (True, 𝑙𝑜𝑔, 𝑑)
∧ logApply(𝑙𝑜𝑔, 𝑑) = 𝑑𝑛𝑒𝑤

𝑠 ∼ (False, nil, 𝑑𝑛𝑒𝑤

aborting aborted

applying

applied

where each node is labeled with what physical states it cor-

responds to. When the system crashes without committing

and a partial transaction in the log it is in the aborting state.

Eventually the transaction is aborted by clearing the log (ig-

noring the partial transaction), transitioning to aborted.

The applying state corresponds to a crash after the commit

flag has been set but before all the writes in the log have

been applied to the data region. The invariant here is that

whatever the current physical data region is, if doApplywere
to apply everything in the log to it, it would end up equal to

𝑑𝑛𝑒𝑤 . This continues to hold even after a crash in the middle

of doApply, because applying a prefix of the log a second

time has no effect. Eventually recovery will finish applying

all of these operations and move to the applied state. From

either aborted or applied the desired abstraction relation

holds.

6.3 Composing Replication and Write-Ahead
Logging

We illustrate the overall result of our example development

in Figure 11. Applying Theorem 7 to the two refinements
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we have established, we get a single implementation, which

recovers the replicated disk followed by the log on crash.

Because the composition is a recovery refinement, Theorem 6

shows that for any sequence of interactions, including with

crashes and recovery, the implementation behaves as the

transactional API promises.

7 Implementation
We implemented Argosy in the Coq proof assistant [29].

The code is open source and available at https://github.com/
mit-pdos/argosy. We give a breakdown of the code in the

framework below, with non-comment, non-blank lines of

code. The entire framework is 3,200 lines of code, around half

of which is in re-usable libraries. The relation library includes

many theorems that hold in Kleene algebras (adjusted to our

typed, monadic setting) with some automation for equational

reasoning.

Our two example refinements use a shared array library

for reasoning about disks as arrays of blocks. Disk replica-

tion is around 1,300 lines, while logging, which has a more

complicated recovery proof, is around 2,000. Much of the

code in these examples comes from proving and especially

stating many intermediate CHL specifications.

Component Lines of code

Core framework 1,440

Relation library 1,020

Reusable libraries 740

Argosy total 3,200

Array library 530

Disk replication proof 1,350

Write-ahead logging proof 1,950

Examples total 3,830

In order to demonstrate that Argosy can be used to build

working systems, we used Coq’s extraction feature to run the

composed logging and replication implementation. First we

extract the Gallina implementation to Haskell. An interpreter

written in Haskell runs the two-disk layer primitives, and a

command-line interface exposes the logging API.

The resulting system has several trusted components. We

trust that the semantics of the lowest layer (with two unre-

liable disks) is correctly implemented by our Haskell inter-

preter, and that the combination of extraction and the GHC

compiler preserve the behavior of the Coq implementation.

We trust that Coq checks the proofs correctly. Finally, we

trust that the top-level specification reflects the intended

behavior of the system.

8 Conclusion
Argosy is a framework for verifying storage system that sup-

ports layered recovery procedures and modular proofs. We

introduce the notion of recovery refinement, a set of condi-
tions for an implementation and its recovery procedure, that

(1) guarantees correctness for clients of the specification,

and (2) composes with other recovery refinements to prove

a whole system correct. The semantics and refinement are

modeled with combinators inspired by Kleene algebra, which

informs our metatheory. To prove each implementation is a

recovery refinement Argosy has an implementation of Crash

Hoare Logic. We used Argosy to modularly verify an exam-

ple of layered recovery, write-ahead logging implemented

on top of a replicated disk.
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