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Abstract. Compiler correctness proofs for higher-order concurrent lan-
guages are difficult: they involve establishing a termination-preserving
refinement between a concurrent high-level source language and an im-
plementation that uses low-level shared memory primitives. However,
existing logics for proving concurrent refinement either neglect proper-
ties such as termination, or only handle first-order state. In this paper,
we address these limitations by extending Iris, a recent higher-order con-
current separation logic, with support for reasoning about termination-
preserving refinements. To demonstrate the power of these extensions,
we prove the correctness of an efficient implementation of a higher-order,
session-typed language. To our knowledge, this is the first program logic
capable of giving a compiler correctness proof for such a language. The
soundness of our extensions and our compiler correctness proof have been
mechanized in Coq.

1 Introduction

Parallelism and concurrency impose great challenges on both programmers and
compilers. In order to make compiled code more efficient and help programmers
avoid errors, languages can provide type systems or other features to constrain
the structure of programs and provide useful guarantees. The design of these
kinds of concurrent languages is an active area of research. However, it is fre-
quently difficult to prove that efficient compilers for these languages are correct,
and that important properties of the source-level language are preserved under
compilation.

For example, in work on session types [19, 44, 17, 10, 41], processes com-
municate by sending messages over channels. These channels are given a type
which describes the kind of data sent over the channel, as well as the order in
which each process sends and receives messages. Often, the type system in these
languages ensures the absence of undesired behaviors like races and deadlocks;
for instance, two threads cannot both be trying to send a message on the same
channel simultaneously.

Besides preventing errors, the invariants enforced by session-types also per-
mit these language to be compiled efficiently to a shared-memory target lan-
guage [42]. For example, because only one thread can be sending a message
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on a given channel at a time, channels can be implemented without perform-
ing locking to send and receive messages. It is particularly important to prove
that such an implementation does not introduce races or deadlocks, since this
would destroy the very properties that make certain session-typed languages so
interesting.

In this paper, we develop a higher-order program logic for proving the cor-
rectness of such concurrent language implementations, in a way that ensures that
termination is preserved. We have used this logic to carry out two case studies.

In the first, which we describe in this paper, we give a machine-checked
proof of correctness for a lock-free implementation of a higher-order session
typed language, i.e., a language in which closures and channels can be sent over
channels. To our knowledge, this is the first such proof of its kind.

In the second case study, described in the appendix, we prove that an im-
plementation of the Craig-Landin-Hagersten queue lock [11, 30] in a concurrent
MiniML language refines a fair ticket lock [31]. This is interesting because on
different hardware, different implementations of these locks may perform bet-
ter [13], so a compiler might choose one or the other based on the target ma-
chine. Our result shows that using the CLH lock instead of the simpler ticket
lock does not affect the behavior of programs.

As we describe below, previously developed program logics cannot be used
to obtain these kinds of correctness results due to various limitations. In the
remainder of the introduction, we will explain why it is so hard to prove refine-
ments between higher-order, concurrent languages. To this end, we first have to
provide some background.

Refinement for concurrent languages. To show that a compiler is correct, one
typically proves that if a source expression E is well-typed, its translation Ê
refines E. In the sequential setting, this notion of refinement is easy to define3:
(1) if the target program Ê terminates in some value v, we expect E to also have

an execution that terminates with value v, and (2) if Ê diverges, then E should
also have a diverging execution.

In the concurrent setting, however, we need to change this definition. In
particular, the condition (2) concerning diverging executions is too weak. To see
why, consider the following program, where x initially contains 0:

while (*x == 0) {} || *x = 1;

Here, || represents parallel composition of two threads. In every execution where
the thread on the right eventually gets to run, this program will terminate. How-
ever, the program does have a diverging execution in which only the left thread
runs: because x remains 0, the left thread continues to loop. Such executions are
“unrealistic” in the sense that generally, we rely on schedulers to be fair and
not let a thread starve. As a consequence, for purposes of compiler correctness,
we do not want to consider these “unrealistic” executions which only diverge
because the scheduler never lets a thread run.

3 Setting aside issues of IO behavior.
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Formally, an infinite execution is said to be fair [26] if every thread which
does not terminate in a value takes infinitely many steps.4 In the definition of
refinement above, we change (2) to demand that if Ê has a fair diverging execu-
tion, then E also has a fair diverging execution. We impose no such requirement
about unfair diverging executions. This leads us to fair termination-preserving
refinement.

Logics for proving refinement. To prove our compiler correct, we need to reason
about the concurrent execution and (non)termination of the source and target
programs. Rather than reason directly about all possible executions of these
programs, we prefer to use a concurrent program logic in order to re-use ideas
found in rely-guarantee reasoning [20] and concurrent separation logic [33]. How-
ever, although a number of concurrency logics have recently been developed for
reasoning about termination and refinements, they cannot be used to prove our
compiler correctness result because they either:

– are restricted to first-order state [18, 35, 28, 29, 27],
– only deal with termination, not refinement [18, 35], or
– handle a weaker form of refinement that is not fair termination-preserving [39,

28, 29].

Although the limitations are different in each of the above papers, let us
focus on the approach by Turon et al. [39] since we will build on it. That paper
establishes a termination-insensitive form of refinement, i.e., a diverging pro-
gram refines every program. Refinement is proven in a higher-order concurrent
separation logic which, in addition to the usual points-to assertions l ↪→ v, also
provides assertions about the source language’s state. For instance, the assertion5

source(i, E) says thread i in the source language’s execution is running expres-
sion E. A thread which “owns” this resource is allowed to modify the state of the
source program by simulating steps of the execution of E. Then, we can prove
that e refines E by showing:

{source(i, E)} e {v. source(i, v)}

As usual, the triple enforces that the post-condition holds on termination of e.
Concretely for the triple above, the soundness theorem for the logic implies that
if target expression e terminates with a value v, then there is an execution of
source expression E that also terminates with value v. However, the Hoare triple
above only expresses partial correctness. That means if e does not terminate,
then the triple above is trivial, and so these triples can only be used to prove
termination-insensitive refinements.

4 This definition is simpler than the version found in Lehmann et al. [26], because
there threads can be temporarily disabled, i.e., blocked and unable to take a step. In
the languages we consider, threads can always take a step unless they have finished
executing or have “gone wrong”.

5 The notation in Turon et al. [39] is different.
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Ideally, one would like to overcome this limitation by adapting ideas from
logics that deal with termination for first-order state. Notably, Liang and Feng
[27] have recently developed a logic for reasoning about fair refinements.

However, there is a serious difficulty in trying to adapt these ideas. Se-
mantic models of concurrency logics for higher-order state usually involve step-
indexing [3, 7]. In step-indexed logics, the validity of Hoare triples is restricted
to program executions of arbitrary but finite length. How can we use these to
reason about fairness, a property which is inherently about infinite executions?

In this paper, we show how to overcome this difficulty: the key insight is
that when the source language has only bounded non-determinism, step-indexed
Hoare triples are actually sufficient to establish properties of infinite program
executions. Using this observation, we extend Iris [22, 21], a recent higher-
order concurrent separation logic, to support reasoning about fair termination-
preserving refinement. The soundness of our extensions to Iris and our case
studies have been verified in Coq.

Overview. We start by introducing the case study that we will focus on in this
paper: a session-typed source language, a compiler into an ML-like language,
and the compiler’s correctness property – fair, termination-preserving refinement
(§2). Then we present our novel higher-order concurrent separation logic for
establishing said refinement (§3). We follow on by explaining the key changes
to Iris that were necessary to perform this kind of reasoning (§4). We then use
the extended logic to prove the correctness of the compiler for our session-typed
language (§5). Finally, we conclude by describing connections to related work
and limitations of our approach that we hope to address in future work (§6).

2 Session-Typed Language and Compiler

This section describes the case study that we chose to demonstrate our logic: a
concurrent message-passing language and a type system establishing safety and
race-freedom for this language. On top of that, we explain how to implement the
message-passing primitives in terms of shared-memory concurrency, i.e., we de-
fine a compiler translating the source language into an ML-like target language.
Finally, we discuss the desired correctness statement for this compiler.

2.1 Source Language

The source language for our compiler is a simplified version of the language
described in Gay and Vasconcelos [17]. The syntax and semantics are given
in Figure 1. It is a functional language extended with primitives for message
passing and a command fork{E} for creating threads. The semantics is defined
by specifying a reduction relation for a single thread, which is then lifted to a
concurrent semantics on thread-pools in which at each step a thread is selected
non-deterministically to take the next step.
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Syntax:

Side s ::= left | right
Val V ::= cs | λx.E1 | (V1, V2) | () | n where c ∈ N
Expr E ::= x | V | E1E2 | (E1, E2) | fork{E} | newch | recv(E)

| send(E1, E2) | let (x, y) = E1 in E2 | ...
Eval Ctx K ::= [] | KE | V K | (K,E) | (V,K) | recv(K) | send(K,E)

| send(V,K) | let (x, y) = K in E | ...
State Σ ∈ N→ List Val× List Val

Config ρ ::= [E1, ... , En];Σ

Type τ ::= Int | Unit | τ1 ⊗ τ2 | τ1 ( τ2 | S
Session Type S ::= !τ. S | ?τ. S | end (co-inductive)

Dual Type ?τ. S , !τ. S !τ. S , ?τ. S end , end

Per-Thread Reduction E;Σ → E′;Σ′: (Pure and symmetric rules ommitted.)

NewCh
c = min{c′ | c′ 6∈ dom(Σ)}

newch;Σ → (cleft, cright); [c ↪→ ([], [])]Σ

SendLeft
Σ(c) = (b→, b←)

send(cleft, V );Σ → cleft; [c ↪→ (b→V, b←)]Σ

RecvRightIdle
Σ(c) = ([], b←)

recv(cright);Σ → recv(cright);Σ

RecvRight
Σ(c) = (V b→, b←)

recv(cright);Σ → (cright, V ); [c ↪→ (b→, b←)]Σ

Concurrent Semantics ρ→ ρ′:

Ei;Σ→E′i;Σ
′

[... ,K[Ei], ... ];Σ→[... ,K[E′i], ... ];Σ
′ [... ,K[fork{Ef}], ... ];Σ→[... ,K[()], ... , Ef ];Σ

Type system: (Standard rules for variables, integers and lambda omitted.)

Fun-Elim
Γ ` E : τ1 ( τ2 Γ ′ ` E′ : τ1

Γ ] Γ ′ ` E E′ : τ2

Pair-Intro
Γ1 ` E1 : τ1 Γ2 ` E2 : τ2

Γ1 ] Γ2 ` (E1, E2) : τ1 ⊗ τ2

Pair-Elim
Γ ` E : τ1 ⊗ τ2 Γ ′, x : τ1, y : τ2 ` E′ : τ ′

Γ ] Γ ′ ` let (x, y) = E in E′ : τ ′

Fork
Γ1 ` Ef : τ ′ Γ2 ` E : τ

Γ1 ] Γ2 ` fork{Ef};E : τ

NewChTyp
Γ ` newch : S ⊗ S

Send
Γ1 ` E1 : !τ. S Γ2 ` E2 : τ

Γ1 ] Γ2 ` send(E1, E2) : S

Recv
Γ ` E : ?τ. S

Γ ` recv(E) : S ⊗ τ

Buffer visualization: Message V has been sent from the left end-point to the right.

· · · V

· · ·

End-point
cleft

End-point
cright

Buffer b→

Buffer b←

Fig. 1. Syntax, semantics, and session type system of message-passing source language
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Threads can communicate asynchronously with each other by sending mes-
sages over channels. For example, consider the following program (which will be
a running example of the paper):

let (x, y) = newch in
(
fork{send(x, 42)}; let ( , v) = recv(y) in v

)
(1)

The command newch creates a new channel and returns two end-points
(bound to x and y in the example). An end-point consists of a channel id c
and a side s (either left or right), and is written as cs. Each channel is a pair of
buffers (b→, b←), which are lists of messages. Buffer b→ stores messages travel-
ing left-to-right (from x to y, in the example above), and b← is for right-to-left
messages, as shown in the visualization in Figure 1.

A thread can then use send(cs, V ) to send a value V along the channel c, with
the side s specifying which buffer is used to store the message. For instance, when
s is left, it inserts the value at the end of the first buffer (SendLeft). This value
will then later be taken by a thread receiving on the right side (RecvRight).
Alternatively, if the buffer is empty when receiving, recv takes an “idle” step
and tries again (RecvRightIdle). (The reason send and recv return the end-
point again will become clear when we explain the type system.)

In the example above, after creating a new channel, the initial thread forks
off a child which will send 42 from the left end-point, x. Meanwhile, the parent
thread tries to receive from the right end-point y, and returns the message it
gets. If the parent thread does this recv before the child has done its send, there
will be no message and the parent thread will take an idle step. Otherwise, the
receiver will see the message and the program will evaluate to 42.

2.2 Session Type System

A type system for this language is shown in Figure 1. This is a simplified version
of the type system given in Gay and Vasconcelos [17].6 In addition to base types
Int and Unit, we have pair types τ1 ⊗ τ2, function types τ1 ( τ2, and session
types S. Session types are used to type the end-points of a channel. These types
describe a kind of protocol specifying what types of data will flow over the
channel, and in what order messages are sent. Notice that this type system is
higher-order in the sense that both closures and channel end-points are first-class
values and can, in particular, be sent over channels.

Session types. The possible session types are specified by the grammar in Fig-
ure 1. If an end-point has the session type !τ. S, this means that the next use
of this end-point must be to send a value of type τ (Send). Afterward, the end-
point that is returned by the send will have type S. Dually, ?τ. S says that the
end-point can be used in a receive (Recv), in which case the message read will
have type τ , and the returned end-point will have type S. Notice that this is
the same end-point that was passed to the command, but at a different type.

6 For the reader familiar with that work: we leave out subtyping and choice types.
Also, we present an affine type system instead of a linear one.
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The type of the end-point evolves as messages are sent and received, always
representing the current state of the protocol. Finally, end is a session type for
an end-point on which no further messages will be sent or received.

When calling newch to create a new channel, it is important that the types of
the two end-points match: whenever one side sends a message of type τ , the other
side should be expecting to receive a message of the same type. This relation
is called duality. Given a session type S, its dual S is the result of swapping
sends and receives in S. In our example (1), the end-point x is used to send a
single integer, so it can be given the type !Int. end. Conversely, y receives a single
integer, so it has the dual type !Int. end = ?Int. end.

Affinity. The type system of the source language is affine, which means that a
variable in the context can be used at most once. This can be seen, e.g., in the
rule Fork: the forked-off thread Ef and the local continuation E are typed using
the two disjoint contexts Γ1 and Γ2, respectively.

One consequence of affinity is that after using an end-point to send or receive,
the variable passed to send/recv has been “used up” and cannot be used anymore.
Instead, the program has to use the channel returned from send/recv, which has
the new “evolved” type for the end-point.

The type system given here ensures safety and race-freedom. However, it does
not guarantee termination. We discuss alternative type systems guaranteeing
different properties in the conclusion.

2.3 Compilation

We now describe a simple translation from this session-typed source language to
a MiniML language with references and a forking primitive like the one in the
source language. We omit the details of the MiniML syntax and semantics as
they are standard.

Our translation needs to handle essentially one feature: the implementation
of channel communication in terms of shared memory references.

The code for the implementation of the channel primitives is shown in Fig-
ure 2. We write Ê for the translation in which we replace the primitives of the
source language with the corresponding implementations. Concretely, applying
the translation to our running example program we get:

let (x, y) = newch in let (x, y) = heapNewch in

fork{send(x, 42)}; ⇒ fork{heapSendx 42};
let ( , v) = recv(y) in v let ( , v) = heapRecv y in v

Each channel is implemented as a linked list which represents both buffers.
Nodes in this list are pairs (l, v), where l is a reference to the (optional) next
node, and v is the message that was sent. Why is it safe to use just one list?
Duality in the session types guarantees that if a thread is sending from one
end-point, no thread can at the same time be sending a message on the other
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heapNewch ,

let l = ref none in (l, l)

heapSend l v ,

let (l′, v′) = (l, v) in

let lnew = ref none in

l′ := some (lnew, v
′);

lnew

heapRecv , rec f l.

match !l with

| none⇒ f l

| some (l′, v)⇒ (l′, v)

end

Fig. 2. Implementation of message passing primitives.

end-point. This ensures that at least one of the two buffers in a channel is always
empty. Hence we just need one list to represent both buffers.

The implementation of newch, given by heapNewch, creates a new empty
linked list by allocating a new reference l which initially contains none. The
function heapSend implements send by appending a node to the end of the list.
Meanwhile, for recv, heapRecv takes an end-point l and waits in a loop until it
finds that the end-point contains a node.

2.4 Refinement

Having given the implementation, let us now clarify what it means for the com-
piler to be correct. Intuitively, we want to show that if we take a well-typed source
expression E, all the behaviors of its translation Ê are also possible behaviors of
E. We say that Ê refines E.

Before we come to the formal definition of refinement, we need to answer
the question: which behaviors do we consider equivalent? In our case, the only
observation that can be made about a whole program is its return value, so
classifying “behaviors” amounts to relating return values. Formally speaking:

n ≈ n () ≈ () l ≈ cs λx.e ≈ λx.E
v1 ≈ V1 v2 ≈ V2

(v1, v2) ≈ (V1, V2)

For integer and unit values, we expect them to be exactly equal; similarly,
pairs are the same if their components are. Coming to locations/end-points and
closures, we do not consider them to be interpretable by the user looking at the
result of a closed program. So, we just consider all closures to be equivalent,
and all heap locations to relate to all channel end-points. Of course, the proof of
compiler correctness will use a more fine-grained logical relation between source
and target values.

Based on this notion of equivalent observations, we define what it means
for a MiniML program e to refine a source program E, written e v E. When
executing from an initial “empty” state ∅, the following conditions must hold:

1. If ([e], ∅)→∗ ([e1, ... , en], σ) then no ei is stuck in state σ.
In other words: the target program does not reach a stuck state.
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2. If ([e], ∅)→∗ ([v1, ... , vn], σ) then either:

(a) ([E], ∅)→∗ ([V1, ... , Vm], Σ) and v1 ≈ V1, or

(b) there is an execution of ([E], ∅) in which some thread gets stuck.

That is, if all threads of the target program terminate with a value, then
either all threads of the source program terminate in some execution and
the return values of the first (main) source thread and target thread are
equivalent; or the source program can get stuck.

3. If ([e], ∅) has a fair diverging execution, then ([E], ∅) also has a fair diverging
execution. Recall that an infinite execution is fair if every non-terminating
thread takes infinitely many steps. This last condition makes the refinement
a fair, termination-preserving refinement.

To understand why we have emphasized the importance of fair termination-
preservation, suppose we had miscompiled our running example as:

let (x, y) = heapNewch in let ( , v) = heapRecv y in v

That is, we removed the sender thread. We consider this to be an incorrect
compilation; i.e., this program should not be considered a refinement of the
source program. But imagine that we removed the word “fair” from condition
(3) above: then this bad target program would be considered a refinement of the
source. How is that? The program does not get stuck, so it satisfies condition (1).
Condition (2) holds vacuously since the target program will never terminate; it
will loop in heapRecv y, forever waiting for a message. Finally, to satisfy condition
(3), we have to exhibit a diverging execution in the source program. Without
the fairness constraint, we can pick the (unfair) execution in which the sender
source thread never gets to run.

Notice that this unfair execution is very much like the example we gave in
the introduction, where a thread waited forever for another one to perform a
change in the shared state.

We consider such unfair executions to be unrealistic [26]; they should not give
license to a compiler to entirely remove a thread from the compiled program.
That’s why our notion of refinement restricts condition (3) to fair executions,
i.e., executions in which all non-terminating threads take infinitely many steps.

Compiler correctness. We are now equipped to formally express the correctness
statement of our compiler:

Theorem 1. For every well-typed source program E, we have that:

Ê v E

We prove this theorem in §5. In the intervening sections, we first develop and
explain a logic to help carry out this proof.
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3 A Logic for Proving Refinement

Proving Theorem 1 is a challenging exercise. Both the source and the target
program are written in a concurrent language with higher-order state, which is
always a difficult combination to reason about. Moreover, the invariant relating
the channels and buffers to their implementation as linked lists is non-trivial and
relies on well-typedness of the source program.

The contribution of this paper is to provide a logic powerful enough to prove
theorems like Theorem 1. In this section, we will give the reader an impression of
both the logic and the proof by working through a proof of one concrete instance
of our general result: we will prove that the translation of our running example
is in fact a refinement of its source.

3.1 Refinement as a Hoare Logic

Our logic is an extension of Iris [22, 21], a concurrent higher-order separation
logic. We use the ideas presented by Turon et al. [39] to extend this (unary) Hoare
logic with reasoning principles for refinement. Finally, we add some further novel
extensions which become necessary due to the termination-preserving nature of
our refinement. We will highlight these extensions as we go.

The following grammar covers the assertions from our logic that we will
need:7

P ::= False | True | P ∨ P | P ∗ P | A(P ) | ∃x. P | ∀x. P | l ↪→ v | source(i, E, d) |
Stopped | c ↪→s (b→, b←) | StsSt(s, T ) | {P } e {x.Q} | P V Q | P VV Q | ...

Many of these assertions are standard in separation logics, and our example
proof will illustrate the non-standard ones.

Recalling the example and its translation,we want to prove:

let (x, y) = heapNewch in let (x, y) = newch in

fork{heapSendx 42}; v fork{send(x, 42)};
let ( , v) = heapRecv y in v let ( , v) = recv(y) in v

or, for short, eex v Eex. Following Ht-refine (Figure 3), it is enough to prove

{source(i, Eex, d)} eex {v.∃V. source(i, V, 0) ∗ v ≈ V } (2)

In other words, we “just” prove a Hoare triple for eex (the MiniML program).
In order to obtain a refinement from a Hoare proof, we equip our logic with as-
sertions talking about the source program E. The assertion source(i, E, d) states
that source-level thread i is about to execute E, and we have delay d left. (We

7 Note that many of these assertions are not primitive to the logic, but are themselves
defined using more basic assertions provided by the logic. See Jung et al. [22, 21] for
further details.
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Step Shift Rules: (all d and d′ must be ≤ some fixed upper-bound D)

src-newch
source(i,K[newch], d)VV ∃c. source(i,K[(cleft, cright)]|, d′) ∗ c ↪→s ([], [])

src-recv-right-miss
source(i,K[recv(cright)], d) ∗ c ↪→s ([], b←)VV source(i,K[recv(cright)], d

′) ∗ c ↪→s ([], b←)

src-recv-right-hit
source(i,K[recv(cright)], d) ∗ c ↪→s (v b→, b←)VV source(i,K[(cright, v)], d′) ∗ c ↪→s (b→, b←)

src-send-left
source(i,K[send(cleft, v)], d) ∗ c ↪→s (b→, b←)VV source(i,K[cleft], d

′) ∗ c ↪→s (b→ v, b←)

src-fork
source(i,K[fork{E}], d)VV ∃j. source(i,K[()], d′) ∗ source(j, E, df)

src-delay
d′ < d ` source(i,K[E], d)VV source(i,K[E], d′)

src-pure-step
e1 → e2

source(i, e1, d)VV source(i, e2, d
′)

src-stopped
source(i, V, 0) ` Stopped

(Symmetric rules and side-condition on d′ omitted.)

Basic Hoare Triples:

ml-alloc
∀x. P VV Q

{P } ref v {x.Q ∗ x ↪→ v}

ml-load
P VV [v/y]Q

{P ∗ x ↪→ v} !x {y.Q ∗ x ↪→ v}

ml-store
P VV Q

{P ∗ x ↪→ v} x := w {Q ∗ x ↪→ w}

ml-fork
P VV Q0 ∗Q1

{Q0} e {Stopped} {Q1} e′ {R}
{P } fork{e}; e′ {R}

ml-rec
P VV P ′ (∀v. {P } (rec f x. e) v {w.Q})⇒ ∀v. {P ′} [rec f x. e/f, v/x]e {w.Q}

∀v. {P } (rec f x. e) v {w.Q}

Ht-frame
{P } e {v.Q}

{P ∗ A(R)} e {v.Q ∗ A(R)}

step-frame
P VV Q

P ∗ A(R)VV Q ∗ A(R)

Ht-csq
P V P ′ {P ′} e {v.Q′} ∀v.Q′ V Q

{P } e {v.Q}

Refinement Rule:

Ht-refine
{source(i, E, d)} e {v.∃V. source(i, V, 0) ∗ v ≈ V }

e v E

Fig. 3. Selection of rules for step-shifts and Hoare triples
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will come back to delays shortly.) The assertion c ↪→s (b→, b←) says that source-
level channel c currently has buffer contents (b→, b←). As usual in separation
logic, both of these assertions furthermore assert exclusive ownership of their
thread or channel. For example, in the case of c ↪→s (b→, b←), this means that
no other thread can access the channel and we are free to mutate it (i.e., send or
receive messages) – we will see later how the logic allows threads to share these
resources. Put together, these two assertions let us control the complete state of
the source program’s execution.

So far, we have not described anything new. However, to establish termination-
preserving refinement, we have to add two novel features to this logic: step shifts
and linear assertions.

Step shifts. The rules given in Figure 3 let us manipulate the state of the source
program’s execution by taking steps in the source program. Such steps are ex-
pressed using step shifts VV. Every step shift corresponds to one rule in the
operational semantics (Figure 1). For example, src-newch expresses that if we
have source(i,K[newch], d) (which means that the source is about to create a
new channel), we can “execute” that newch and obtain some fresh channel c and
ownership of the channel (c ↪→s ([], [])). We also obtain source(i,K[c], d′), so we
can go on executing the source thread.

Crucially, having P VV Q shows that in going from P to Q, the source has
taken a step. We need to force the source to take steps because the refinement
we show is termination-preserving. If a proof could just decide not to ever step
the source program, we could end up with a MiniML program e diverging, while
the corresponding source program E cannot actually diverge. That would make
Ht-refine unsound. So, to avoid this, all rules that take a step in the MiniML
program (Figure 3) force us to also take a step shift.

A strict implementation of this idea requires a lock-step execution of source
and target program. This is too restrictive. For that reason, the source assertion
does not just record the state of the source thread, but also a delay d. Decre-
menting the delay counts as taking a step in the source (src-delay). When we
take an actual source step, we get to reset the delay to some new d′ – so long
as d′ is less than or equal to some fixed upper bound D that we use throughout
the proof. There are also rules that allow executing multiple source steps when
taking just a single step in the target program; we omit these rules for brevity.
For the remainder of this proof, we will also gloss over the bookkeeping for the
delay and just write source(i, e).

The assertion Stopped expresses that a source thread can no longer take steps.
As expected, this happens when the source thread reaches a value (src-stopped).

Linearity. There is one last ingredient we have to explain before we start the
actual verification: linearity. Assertions in our logic are generally linear, which
means they cannot be “thrown away”, i.e., P ∗Q ` P does not hold generically
in P and Q. As a consequence, assertions represent not only the right to perform
certain actions (like modifying memory), but also the obligation to keep perform-
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ing steps in the source program. This ensures that we do not “lose track” of a
source thread and stop performing step shifts justifying its continued execution.

The modality A(P ) says that we have a proof of P , and that this is an affine
proof – so there are no obligations encoded in this assertion, and we can throw it
away. Some rules are restricted to affine assertions, e.g., rules for framing around
a Hoare triple or a step shift (Figure 3; the rule Ht-csq will be explained later).
Again, this affine requirement ensures that we do not “smuggle” a source thread
around the obligation to perform steps in the source. All the base assertions,
with the exception of source(i, e), are affine.

Coming back to the Hoare triple (2) above that we have to prove, the pre-
condition source(i, Eex) expresses that we start out with a source program exe-
cuting Eex (and not owning any channels), and we somehow have to take steps
in the source program to end up with source(i, V ) such that V is “equivalent” (in
the sense defined in §2.4) to the return value of the target program. Intuitively,
because we can only manipulate source by taking steps in the source program,
and because we end up stepping from source(i, Eex) to “the same” return value
as the one obtained from e, proving the Hoare triple actually establishes a re-
finement between the two programs. Furthermore, since source is linear and we
perform a step shift at every step of the MiniML program, the refinement holds
even for diverging executions.

3.2 Proof of the Example

The rest of this section will present in great detail the proof of our example (2).
The rough structure of this proof goes as follows: after a small introduction cov-
ering the allocation of the channel, we will motivate the need for state-transition
systems (STS), a structured way of controlling the interaction between cooper-
ating threads. We will define the STS used for the example and decompose the
remainder of the proof into two pieces: one covering the sending thread and one
for the receiving thread.

Getting started. The first statement in both source and target program is the
allocation of a channel. The following Hoare triple that’s easily derived from
ml-alloc summarizes the action of heapNewch: It allocates a channel in both
programs.

{source(i,K[newch])} heapNewch
{x. ∃l, c. x = (l, l) ∗ l ↪→ none ∗ c ↪→s ([], []) ∗ source(i,K[(cleft, cright)])}

(3)

Let us pause a moment to expand on that post-condition. On the source side,
we have a channel c with both buffers being empty; on the target side we have
a location l representing the empty buffer with none. The return value x is a
pair with both components being l. Finally, the source thread changed from
K[newch] in the pre-condition to K[(cleft, cright)], meaning that the newch has
been executed and the context can now go on with its evaluation based on the
pair (cleft, cright).
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S , init
sent
[S]

received
[S], [R]

ϕ(init) , l ↪→ none ∗ c ↪→s ([], [])

ϕ(sent) , l ↪→ some ( , 42) ∗ c ↪→s ([42], [])

ϕ(received) , True

Fig. 4. STS for the example

We apply this triple for heapNewch with the appropriate evaluation context
K for the source program, and the post-condition of (3) becomes our new context
of current assertions. Next, we reduce the let on both sides, so we end up with

l ↪→ none ∗ c ↪→s ([], []) ∗ source(i, ecomm(c)) (4)

where
ecomm(c) , fork{send(cleft, 42)}; let ( , v) = recv(cright) in v

and the remaining MiniML code is

fork{heapSend l 42}; let ( , v) = heapRecv l in v

(In the following, we will perform these pure reduction steps and the substitu-
tions implicitly.)

As we can see, both programs are doing a fork to concurrently send and
receive messages on the same channel. Usually, this would be ruled out by the
exclusive nature of ownership in separation logic. To enable sharing, the logic
provides a notion of protocols coordinating the interaction of multiple threads on
the same shared state. The protocol governs ownership of both l (in the target)
and c (in the source), and describes which thread can perform which actions on
this shared state.

State-transition systems. A structured way to describe protocols is the use of
state-transition systems (STS), following the ideas of Turon et al. [39]. An STS
S consists of a directed graph with the nodes denoting states and the arrows
denoting transitions.

The STS for our example is given in Figure 4. It describes the interaction
of our two threads over the shared buffer happening in three phases. In the
beginning, the buffer is empty (init). Then the message is sent by the forked-
off sending thread (sent). Finally, the message is received by the main thread
(received).

The STS also contains two tokens. Tokens are used to represent actions that
only particular threads can perform. In our example, the state sent requires the
token [S]. The STS enforces that, in order to step from init to sent, a thread
must provide (and give up) ownership of [S]. This is called the law of token
preservation: Because sent contains more tokens than init, the missing tokens
have to be provided by the thread performing the transition. Similarly, [R] is
needed to transition to the final state received.
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To tie the abstract state of the STS to the rest of the verification, every STS
comes with an interpretation ϕ. For every state, it defines the assertion that has
to hold at that state. In our case, we require the buffer to be initially empty,
and to contain 42 in state sent. Once we reach the final state, the programs no
longer perform any action on their respective buffers, so we stop keeping track.

We need a way to track the state of the STS in our proof. To this end, the
assertion StsSt(s, T ) states that the STS is at least in state s, and that we own
tokens T . We cannot know the exact current state of the STS because other
threads may have performed further transitions in the mean time. The proof
rules for STSs can be found in the appendix; in the following, we will keep the
reasoning about the STS on an intuitive level to smooth the exposition.

Plan for finishing the proof. Let us now come back to our example program. We
already described the STS we are going to use for the verification (Figure 4).
The next step in the proof is thus to initialize said STS.

Remember our current context is (4). When allocating an STS, we get to pick
its initial state – that would be init, of course. We have to give up ownership of
l and c to initialize the STS. In exchange, we obtain StsSt. Our context is now

StsSt(init, {[S], [R]}) ∗ source(i, ecomm(c)) (5)

The next command executed in both programs is fork. We are thus going
to apply ml-fork and prove the step shift using src-fork. The two remaining
premises of ml-fork are the following two Hoare triples:

{StsSt(init, [S]) ∗ source(j, send(cleft, 42))} heapSend l 42 {Stopped} (6)

{StsSt(init, [R]) ∗ source(j, let ( , v) = recv(cright) in v)}
let ( , v) = heapRecv l in v

{n. n = 42 ∗ source(j, 42)}
(7)

Showing these will complete the proof. The post-condition Stopped of (6) is
mandated by ml-fork; we will discuss it when verifying that Hoare triple. Note
that we are splitting the StsSt to hand the two tokens that we own to two
different threads.

Verifying the sender. To prove the sending Hoare triple (6), remember that this
is the context we have available:

StsSt(init, [S]) ∗ source(j, send(cleft, 42))

and this is the code we wish to verify (unfolding the definition of heapSend, and
performing some pure reductions):

let lnew = ref none in l := some (lnew, 42); lnew

The allocation is easily handled with ml-alloc, and it turns out we don’t
even need to remember anything about the returned lnew.
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The next step is the core of this proof: showing that we can change the value
stored in l. Notice that we do not own l ↪→ ; the STS “owns” l as part of its
interpretation. So we will open the STS to get access to l. To keep this discussion
focused, we will not discuss STSs formally and instead just appeal to intuition.

Looking at Figure 4, we can see that doing the transition from init to sent
requires the token [S], which we own – as a consequence, nobody else could
perform this transition. It follows that the STS is currently in state init. We
obtain ϕ(init), so that we can apply ml-store with src-send-left, yielding

l ↪→ some (l′, 42) ∗ c ↪→s ([], []) ∗ source(j, cleft) (8)

To finish up accessing the STS, we have to pick a new state and show that
we actually possess the tokens to move to said state. In our case, we cannot pick
received, since we do not own the token [R] necessary for that step. Instead, we
will pick sent and give up our token. This means we have to establish ϕ(sent).
Doing so consumes most of our context (8), all we have left is

source(j, cleft)

What remains to be done? We have to establish the post-condition of our
triple (6), which is Stopped. By src-stopped, this immediately follows from the
fact that we reduced the source thread to cleft, which is a value.

Notice that this last step was important: We showed that when the MiniML
thread terminates, so does the source thread. The original fork rule for Iris allows
picking any post-condition for the forked-off thread, because nothing happens
any more with this thread once it terminates. However, we wish to establish
that if all MiniML threads terminate, then so do all source threads – and for
this reason, ml-fork forces us to prove Stopped, which asserts that all the threads
we keep track of have reduced to a value. This finishes the proof of the sender.

Verifying the receiver. The next (and last) step in establishing the refinement
(2) is to prove the Hoare triple for the receiving thread (7). This is the target
code to verify:

let ( , v) = heapRecv l in v

This is little more than an application of the recursive function heapRecv. As
usual for reasoning about recursive functions, ml-rec says that we can assume
that recursive occurrences of heapRecv have already been proven correct. It may
be surprising to see this rule – after all, rules like ml-rec are usually justified
by saying that all we do is partial correctness. Notice, however, that we are
not showing that Eex terminates. All we show is that, if Eex diverges, then
so does eex. In other words, we are establishing termination-preservation, not
termination.

In continuing the proof, we thus get to assume correctness of the recursive
call. Our current context is

StsSt(init, [R]) ∗ source(j, let ( , v) = recv(cright) in v) (9)
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and the code we are verifying is

match !l with none⇒ heapRecv l | some (l′, v)⇒ (l′, v) end

with post-condition ( , n). n = 42 ∗ source(j, 42).
The first and most interesting command of this program is !l. To access l, we

have to again open the STS. Since we own [R], we can rule out being in state
received. We perform a case distinction over the remaining two states.

– If we are in init, we get l ↪→ none∗c ↪→s ([], []) from the STS’s ϕ(received).
We use ml-load with src-recv-right-miss. Notice how we use c ↪→s ([], [])
to justify performing an “idle” step in the source. This is crucial – after all,
we are potentially looping indefinitely in the target, reading l over and over;
we have to exhibit a corresponding diverging execution in the source.
Since we did not change any state, we close the invariant again in the init
state. Next, the program executes the none arm of the match: heapRecv l.
This is where we get to make use of our assumption that the recursive call
is correct to finish up the proof.

– Otherwise, the current state is sent, and we obtain l ↪→ some ( , 42) ∗ c ↪→s

([42], []). We use ml-load with src-recv-right-hit; this time we know that
the recv in the source is going to succeed. We also know and remember that
we are loading ( , 42) from l. We pick received as the next state (giving
up our STS token), and trivially establish ϕ(received). We can now throw
away ownership of l and c as well as StsSt(received) since we no longer
need them – we can do this because all these assertions are affine.
All that remains is the source thread:

source(j, let ( , v) = (cright, 42) in v)

Next, the target program will execute the some branch of the match, which
terminates execution. What is left is to justify the post-condition: ( , n). n =
42 ∗ source(j, 42). We already established that the second component of the
value loaded from l is 42, and the source thread is easily reduced to 42 as
well.

This finishes the proof of (7) and therefore of (2): we proved that eex v Eex.

4 Soundness of the Logic

We have seen how to use our logic to establish a refinement for a particular
simple instance of our translation. We now need to show that this logic is sound.

As already mentioned, our logic is an extension of Iris, so we need to adapt
the soundness proof of Iris [21]. The two new extensions that were described
in §3.1 are:

1. We add a notion of a step-shift, which is used to simulate source program
threads.
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2. We move from an affine logic to a linear logic. This is needed to capture the
idea that some resources (like source) represent obligations that cannot be
thrown away.

In this section we describe how we adapt the semantic model of Iris to handle
these changes. Although our extensions sound simple, the modification of the
model requires some care. Many of the features we used in §3, such as STSs [22]
and reasoning about the source language, are derived constructions that are not
“baked-in” to the logic. As we change the model, we need to ensure that all
of these features can still be encoded. We also strive to keep our extensions as
general as possible so as to not unnecessarily restrict the flexibility of Iris.

Brief review of the Iris model. We start by recalling some aspects of the Iris
model [21] that we modify in our extensions. A key concept is the notion of a
resource. Resources describe the physical state of the program as well as addi-
tional ghost state that is added for the purpose of verification and used, e.g., to
interpret STSs or the assertions talking about source programs. Resources are
instances of a partial commutative monoid-like algebraic structure; in particular,
two resources a, b can be composed to a · b. This operation is used to combine
resources held by different threads. The operation also gives rise to a pre-order
on resources, defined as a1 4 a2 , ∃a3. a1 · a3 = a2, i.e., a1 is included in a2 if
the former can be extended to the latter by adding some additional resource a3.

Ideally, we would just interpret an assertion P as a set of resources. For
technical reasons (that we will mostly gloss over), Iris needs an additional com-
ponent: the step-index n. An assertion is thus interpreted as a set of pairs (n, a)
of step-indices and resources. We write n, a |= P to indicate that (n, a) ∈ P ,
and read this as saying that a satisfies P for n steps of the target program’s
execution.

Iris furthermore demands that assertions (interpreted as sets) satisfy two
closure properties: They must be closed under larger resources and smaller step-
indices. Formally:

1. If n, a |= P and a 4 a′, then n, a′ |= P .

2. If n, a |= P and n′ ≤ n, then n′, a |= P .

The first point above makes Iris an affine as opposed to a linear logic: we can
always “add-on” more resources and continue to satisfy an assertion. Put dif-
ferently, there is no way to state an upper bound on our resources. The second
point says that if P holds for n steps, then it also holds for fewer than n steps.

To give a model to assertions like l ↪→ v, we need a function HeapRes(l, v)
describing, as a resource, a heap which maps location l to v. We then define:

n, a |= l ↪→ v iff HeapRes(l, v) 4 a

Notice the use of 4, ensuring that the closure property (1) holds.
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Equipping Iris with linear assertions. In order to move to a linear setting with
minimal disruption to the existing features of Iris, we replace the judgment
n, a |= P with n, a, b |= P . That is, assertions are now sets of triples: a step-
index and two resources. The downward closure condition on n and the upward
closure condition on a still apply, but we do not impose such a condition on b:
this second resource will represent the “linear piece” of an assertion. Crucially,
whereas affine assertions like l ↪→ v continue to “live” in the a piece, the linear
source resides in b:

n, a, b |= l ↪→ v iff HeapRes(l, v) 4 a ∧ b = ε

n, a, b |= source(i, E, d) iff SourceRes(i, E, d) = b

where ε is the unit of the monoid. We assume SourceRes(i, E, d) to define, as a
resource, a source thread i executing E with d delay steps left.

As we can see, source describes the exact linear resources b that we own,
whereas ↪→ merely states a lower bound on the affine resources a (due to the
upwards closure on a). Notice that a and b are both elements of the same set of
resources; it is just their treatment in the closure properties of assertions which
makes one of them affine, and the other linear.

Because there is no upward closure condition on the second monoid element,
the resulting logic is not affine: if n, a, b |= P ∗ Q, then it is not necessarily the
case that n, a, b |= P . In some sense a satisfies P , but b may be “too big”.

We define the affine modality by:

n, a, b |= A(P ) iff n, a, b |= P ∧ b = ε

This says that in addition to satisfying P , b should equal the unit of the monoid.
That is, the linear part is “empty”; there are no obligations encoded in P . That
makes it sound to throw away P or to frame it.

The advantage of this “two world” model is that it does not require us to
change many of the encodings already present in Iris, like STSs.

Step Shifts. We are now ready to explain the ideas behind the step shift. Re-
member the goal here is to account for the steps taken in the source program,
in a way that we can prove refinements by proving Hoare triples (Ht-refine).
This is subtle because by the definition of refinement (§2.4), we need to make
statements even about infinite executions, i.e., executions that never have to
satisfy the post-condition.

The key idea is to equip the resources of Iris with a relation that represents
a notion of taking a (resource) step. We will then pick the resources in such a
way as to represent the status of a source program,8 and we define the resource
step to be taking a step in the source program. All the other components of the
resource, like STSs, will not be changed by resource steps.

8 Iris as a logic is designed to be mostly parametric in the actual choice of resources,
so we can pick a particular resource for our particular source language and still use
most of the general Iris machinery.
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Finally, we need to connect Hoare triples to these resource steps. To this
end, we change the definition of Hoare triples so that whenever a target thread
takes a step, we have to also take a step on our resources. We also enforce that
forked-off threads must have a post-condition of Stopped, ensuring that target
language threads cannot stop executing while source language threads are still
running. Finally, we introduce the notion of a step shift to be, essentially, a kind
of implication in which one takes a resource step. This gives rise to the shape of
the proof rules in Figure 3, which force the user of the logic to perform a step
shift alongside every step through the MiniML program.

Soundness of the refinement. Having extended the definition of Hoare triples
in this way, we can prove the soundness of our refinement theorem. Recall that
the definition of refinement had three parts. For each of these parts, we proved
an adequacy theorem for our extensions. These theorems are parameterized by
the kind of resource picked by the user, and in particular the kind of resource
step. Below, we show these theorems specialized to the case where resource steps
correspond to source language steps.

The first refinement condition, which says that the target program must
not get stuck, follows from a “safety” theorem that was already present in the
original Iris:

Lemma 2. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V )} holds and we have
([e], ∅)→∗ ([e1, ... , en], σ), then each ei is either a value or it can take a step in
state σ.

The second refinement condition says that if the execution of e terminates,
then there should be a related terminating execution in the source. Remember
that the definition of the Hoare triple requires us to take a step in the source
whenever the target steps (modulo a finite number of delays). Hence a proof of
such a triple must have “built-up” the desired source execution:

Lemma 3. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V )} holds and we have
([e], ∅) →∗ ([v1, ... , vn], σ), then there exists V1, E2, ... , Em, Σ s.t. ([E], ∅) →∗
([V1, E2, ... , Em], Σ). Moreover, each Ei is either stuck or a value, and v1 ≈ V1.

Here, we are already making crucial use of both linearity of source and the
fact that forked-off threads must have post-condition Stopped: if it were not for
these requirements, even when all target threads terminated with a value vi, we
could not rule out the existence of source threads that can go on executing.

Finally, we come to the third condition, which says fair diverging executions
of the target should correspond to fair diverging executions of the source:

Lemma 4. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V )} holds and ([e], ∅)
has a diverging execution, then ([E], ∅) has a diverging execution as well. In
addition, if the diverging execution of the target is fair, so too is the execution
of the source.
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This is the hardest part of the soundness proof. We would like to start by
arguing that, just as for the finite case, if the target program took an infinite
number of steps, then the proof of the refinement triple must give a corresponding
infinite number of steps in the source program. Unfortunately, this argument is
not so simple because of step-indexing.

In Iris, Hoare triples are themselves step-indexed sets. We write n |= {P } e {Q}
to say that the triple holds at step-index n. Then, when we say we have proved a
Hoare triple, we mean the triple holds for all step-indices n and all resources sat-
isfying the precondition. As is usual with step-indexing, when a triple {P } e {Q}
holds for step-index n, that means when the precondition is satisfied, execution
of e is safe for up-to n steps, and if it terminates within those n steps, the post-
condition holds. In our case, it also means that each step of the target program
gives a step of the source program, for up to n target steps.

This restriction to only hold “up to n steps” arises due to the way Hoare
triples are defined in the model: when proving the Hoare triple at step-index n,
if e steps to e′, we are only required to show (n− 1) |= {P ′} e′ {Q} for some P ′.

The restriction to a finite number of steps did not bother us for Lemma 2
and Lemma 3. Since they only deal with finite executions, and the Hoare triple
holds for all starting indices n, we can simply pick n to be greater than the
finite execution we are considering. But we cannot do this when we want to
prove something about a diverging execution of the target. Whatever n we start
with, it is not big enough to get the infinite source execution we need.

Bounded non-determinism, infinite executions, and step-indexing. Our insight is
that when the source language has only bounded non-determinism, we can set-up
a more careful inductive argument. By bounded non-determinism, we mean that
each configuration ([E, ...], Σ) only has finitely many possible successor configu-
rations. The key result is the following quantifier inversion lemma:

Lemma 5. Let R be a step-indexed predicate on a finite set X. Then:

(∀n. ∃x. n |= R(x))⇒ (∃x. ∀n. n |= R(x))

Proof. By assumption, for each n, there exists xn ∈ X such that n |= R(xn).
Since X is finite, by the pigeon-hole principle, there must be some x ∈ X such
that m |= R(x) for infinitely many values of m. Now, given arbitrary n, this
means there exists m > n such that m |= R(x). Since step-indexed predicates
are downward-closed, n |= R(x). Hence ∀n. n |= R(x).

Ignoring delay steps for the moment, we apply this lemma to our setting to get:

Lemma 6. Suppose e steps to e′ and ∀n. ∃Pn. n |= {source(i, E) ∗ Pn} e {Q}.
Then, ∃E′ such that E steps to E′ and ∀n. ∃P ′n. n |= {source(i, E′) ∗ P ′n} e′ {Q}.

Proof. Let X by the set of E′ that E can step to, which we know to be fi-
nite.9 Consider the step-indexed predicate R on X defined by n |= R(E′) ,

9 To be precise we ought to mention the initial states σ and Σ that e and E run in
and assume they satisfy the precondition of the triple.
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(E → E′ ∧ ∃P ′n. n |= {source(i, E′) ∗ P ′n} e′ {Q}). By assumption, for each n > 0,
n |= {source(i, E) ∗ Pn} e {Q} for some Pn. The definition of Hoare triples implies
that there exists some E′ such that (n− 1) |= R(E′). Thus, ∀n.∃E′. n |= R(E′),
so we can apply Lemma 5 to get the desired result.

Notice that in the conclusion of Lemma 6, if e′ takes another step, we
can apply Lemma 6 again to the triples for e′. So, given some initial triple
{source(i, E)} e {Q} and a diverging execution of e, by induction we can repeat-
edly apply Lemma 6 to construct an infinite execution of the source program.
Finally, we prove that if the execution of e was fair, this source execution will
be fair as well, giving us Lemma 4. Of course, for the full mechanized proof we
have to take into account the delay steps and consider the case where the target
thread multiple source threads. But all of these are finite additional possibilities,
they do not fundamentally change the argument sketched above.

5 Proof of Compiler Correctness

We now give a brief overview of our proof of Theorem 1. Recall that we want to
show that if E is a well-typed source expression, then Ê v E.

Our proof is a binary logical relations argument. We interpret each type τ
as a relation on values from the target and source language, writing v 'V V : τ
to say that v and V are related at type τ . However, following the example of
[24, 23], these are relations in our refinement logic, which means we can use all
of the constructs of the logic to describe the meaning of types. We then prove a
fundamental lemma showing that well-typed expressions are logically related to
their translation. Next, we show that our logical relation implies the triple used
in Ht-refine. Theorem 1 is then a direct consequence of these two lemmas.

Details of these proofs can be found in the appendix; here we focus on the defi-
nition of the logical relation itself. For most types, the interpretation is straight-
forward and fairly standard. For instance, v 'V V : Int holds exactly when
v = V = n, for some integer n. The important exception, of course, is the inter-
pretation of session types, in which we need to relate the encoding of channels
as linked-lists to the source language’s primitive buffers.

Sessions as an STS. To interpret session types, we generalize the state transition
system from the example in §3 to handle the more complicated “protocols” that
session types represent.

What should the states of this STS be? In the STS used in §3, we had three
states: init, in which the message had not been sent; sent, where a message
had been sent from the left end-point, but not received; and received, where
the message had now been received at the right end-point. In the general case,
we will have more than one message, so our states need to track how many
messages have been sent/received on each end-point. We also need to know the
“current” type of the end-points, but notice that if we know the starting type
of an end-point, and how many messages have been sent/received on it, we can
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always recover these current types. We write Sn for the type after n messages
have been sent/received starting from S.

We also need to know which heap locations ll and lr currently represent the
end-points of the channel. All together then, the states will be tuples (nl, nr, ll, lr)
describing how many messages have been sent/received on each end-point, and
the corresponding heap locations.

Remember that we also need to define the tokens and transitions associated
with each state of our STS. The transitions are simple: we can either advance
the left end-point, incrementing nl and updating ll, and similarly for the right
end-point. For the tokens, recall that in our example proof, we had [S] and
[R] tokens used by each thread to advance the state when they had interacted
with their respective end-points. In general, the threads will now use the end-
points multiple times, so we need a token for each of these uses on both sides.
Concretely, we will have two kinds of tokens, [Left n] and [Right n], which are
used when advancing the left and right end-point counter to n, respectively.

To complete the description of the STS, we have to talk about the interpre-
tation of the states. This interpretation has to relate the messages in the source
channel’s current buffers to the nodes in the linked list on the target heap. The
individual messages should, of course, be related by our logical relation ('V).
We lift this relation to lists of messages ('L) as follows:

[] 'L [] : S

L-cons
.(v 'V V : τ) ∗ Lh 'L Lc : S

vLh 'L V Lc : ?τ. S

For now, ignore the . symbol. The left rule says that two empty lists are equiv-
alent at any session type. The right rule says two lists are related at a receive
type ?τ. S, if their heads are related under τ , and the remainders of each list are
related at S. It is important that this is a receive type: if the current type of the
end-point is a send type, then there should not be any messages in its receive
buffer, so the rule for empty lists is the only one that applies.

We can now give our state interpretation, ϕ, which is parameterized by (a)
the starting type S of the left end-point (the right end-point’s starting type is by
necessity dual so there is no need to track it), and (b) the name c of the channel:

ϕS,c(nl, nr, ll, lr) , ∃Lc, Lh.
(
c ↪→s (Lc, []) ∗ linklist(Lh, ll, lr) ∗ (10)

(Lh 'L Lc : Snl) ∗ nl + |Lc| = nr

)
∨ ... (11)

Let us explain this piece by piece. To start, we have that there exists a list
of source values Lc and a list of target values Lh, representing the messages that
are stored in the buffer right now. We then distinguish between two cases: either
the first buffer is empty or the second buffer is empty. We omit the second case
(corresponding to the second disjunct) because it is symmetric. In the first case,
the channel’s first buffer contains Lc and the second buffer is empty (10, left). On
the target side, the buffer is represented as a linked list from ll to lr containing the
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values Lh (10, right). Of course, the lists of values need to be related according
to the end-point’s current type Snl (11, left). Finally, the number of messages
sent/received through the left end-point, plus the number of messages still in
the buffer, should equal the total number of messages sent/received through
the right end-point (11, right). Therefore, when these remaining messages are
received by the left end-point, the two types will again be dual.

Informally then, the value relation at session types l 'V cs : S says that
there exists an appropriate STS and tokens for the session S which relates l
and cs. We can then prove Hoare triples for the message-passing primitives that
manipulate this STS. For instance, for heapRecv we have10

{source(i,K[recv(cs)]) ∗ l 'V cs : ?τ. S} heapRecv l

{(l′, v).∃V. source(i,K[(cs, V )]) ∗ (v 'V V : τ) ∗ l′ 'V cs : S}

This triple closely corresponds to the typing rule Recv (Figure 1): typing
judgments in the premise become value relations in the pre-condition, and the
conclusion is analogously transformed into the postconditon. Indeed, the proof
of the fundamental lemma essentially just appeals to these triples.

There is something we have glossed over: when we defined the logical relation,
we used the STS, but the STS interpretation used the logical relation! This
circularity is the reason for the . symbol guarding the recursive occurrence of
('V) in L-cons. The details are spelled out in the appendix.

6 Conclusion and Related Work

We have presented a logic for establishing fair, termination-preserving refine-
ment of higher-order, concurrent languages. To our knowledge, this is the first
logic combining higher-order reasoning (and in particular, step-indexing) with
reasoning for termination-sensitive concurrent refinement. Moreover, we applied
this logic to verify the correctness of a compiler that translates a source language
featuring asynchronous channels into an ML-like target language with a shared
heap.

All of these results have been fully mechanized in Coq. Our mechanization
builds on the Coq development described in Jung et al. [21] and the proof-mode
from Krebbers et al. [23]. The proof scripts can be found online [1].

Second Case Study. Our logic is not tied to this particular source language and
translation: we have also used it to give a machine-checked proof that the Craig-
Landin-Hagersten queue lock [11, 30] refines a ticket lock. Such a refinement
holds because both locks are fair : threads enter the critical section in the order
that they attempt to acquire the lock. Thus, using the CLH lock instead of the
ticket lock does not affect termination. In contrast, when using a test-and-set
spinlock, a thread can starve waiting as other threads repeatedly “win” and
acquire the lock instead. Further details can be found in the appendix.

10 We are ignoring the delay steps, see the appendix for further details.
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Session Types. Starting from the seminal work of Honda [19], a number of
session-type systems have been presented with different features [44, 17, 10, 38,
41] (among many others). The language presented here is a simplified version of
the one in Gay and Vasconcelos [17]. Wadler [41] has shown that a restricted sub-
set of the language in [17] does enjoy a deadlock freedom property. This property
holds only when the type system is linear, like the original in [17]. Pérez et al.
[34] and Caires et al. [9] give logical relations for session-typed languages, which
they use to prove strong normalization and contextual equivalence results. Their
logical relation is defined “directly”, rather than by translating into an interme-
diary logic. Early implementations of another session-typed system [42] used a
ring-buffer to represent channels instead of linked lists. It would be interesting
to use our logic to prove the correctness of this implementation.

Logics for Concurrency, Termination, and Refinement. There is a vast literature
on program logics for concurrency [33, 8, 39, 22, 21, 14, 36, 12, 35, 32, 15, 40, 16,
28, 29, 27, 18]. Indeed, the reason for constructing a logical relation on top of a
program logic, as in Krogh-Jespersen et al. [24], is so that we can take advantage
of the many ideas that have proliferated in this community.

Narrowing our focus to logics for refinement and termination properties: Ben-
ton [4] pioneered the use of a relational Hoare logic for showing the correctness
of compiler transformations in the sequential setting. Yang [43] generalized this
to relational separation logic. We have already described [39], which developed a
higher-order concurrent separation logic for termination-insensitive refinement.
The logic in Liang et al. [28] similarly allows non-terminating programs to re-
fine terminating ones. This was extended in [29] for a termination-preserving
refinement, but this deals with termination-preservation without fairness. Most
recently Liang and Feng [27] addressed fair termination-preserving refinement.
They handle fairness reasoning in a more general way than we do: threads can
explicitly reason about how their actions may or may not further delay other
threads. This may be needed for verifying some of the examples they consider.
For us, fairness is more implicit ; we merely (conservatively) rule out certain
things, which is sufficient for our example. It would be interesting to consider
adapting this more explicit fairness reasoning to the higher-order setting.

Hoffmann et al. [18] features a concurrent separation logic for total correct-
ness. Threads own resources called “tokens”, which must be “used up” every time
a thread repeats a while loop. This “using up” of tokens inspired our step-shift
construct. Later, da Rocha Pinto et al. [35] generalized this by using ordinals
instead of tokens: threads decrease the ordinal they own as they repeat a loop.
This is useful for languages involving unbounded non-determinism in which one
cannot bound the number of steps needed to terminate. Our technique for coping
with step-indexing in §4 relied on bounded non-determinism. It may be possible
to address this limitation by using transfinite step-indexing [5, 37] instead.
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A Appendix – Extensions to Iris 2.0

This section is a reproduction of the manual for the Iris 2.0 logic (taken from a
revised version of the technical appendix of Jung et al. [21]), with the modifi-
cations needed for our extension. This reproduction is done with permission of
the authors of Jung et al. [21]. Our modifications are highlighted in blue, like
so. Hence, this section is best viewed in color. If a section or paragraph heading
is highlighted in blue, everything in that section is new.

Disclaimer: The Coq development of the logic is taken to be authoritative.
Any discrepancies between this document and the Coq code should therefore be
regarded as errors. Some important rules developed in the Coq proof may have
been left out. Moreover, any mistakes in this document may have been introduced
by the present authors: readers interested in the original Iris should consult its
documentation. Also, the reader should be aware that the latest version of Iris
has departed significantly from the version with which we began our extensions.

A.1 Algebraic Structures

COFE The model of Iris lives in the category of Complete Ordered Families
of Equivalences (COFEs). This definition varies slightly from the original one
in [6].

Definition 7 (Chain). Given some set T and an indexed family (
n
= ⊆ T ×

T )n∈N of equivalence relations, a chain is a function c : N → T such that

∀n,m. n ≤ m⇒ c(m)
n
= c(n).

Definition 8. A complete ordered family of equivalences (COFE) is a tuple

(T, (
n
= ⊆ T × T )n∈N, lim : chain(T )→ T ) satisfying

∀n. (n=) is an equivalence relation (cofe-equiv)

∀n,m. n ≥ m⇒ (
n
=) ⊆ (

m
=) (cofe-mono)

∀x, y. x = y ⇔ (∀n. x n
= y) (cofe-limit)

∀n, c. lim(c)
n
= c(n) (cofe-compl)

The key intuition behind COFEs is that elements x and y are n-equivalent,
notation x

n
= y, if they are equivalent for n steps of computation, i.e., if they

cannot be distinguished by a program running for no more than n steps. In
other words, as n increases,

n
= becomes more and more refined (cofe-mono)—

and in the limit, it agrees with plain equality (cofe-limit). In order to solve the
recursive domain equation in §A.6 it is also essential that COFEs are complete,
i.e., that any chain has a limit (cofe-compl).

Definition 9. An element x ∈ T of a COFE is called discrete if

∀y ∈ T. x 0
= y ⇒ x = y

A COFE A is called discrete if all its elements are discrete. For a set X, we
write ∆X for the discrete COFE with x

n
= x′ , x = x′
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Definition 10. A function f : T → U between two COFEs is non-expansive
(written f : T

ne−→ U) if

∀n, x ∈ T, y ∈ T. x n
= y ⇒ f(x)

n
= f(y)

It is contractive if

∀n, x ∈ T, y ∈ T. (∀m < n. x
m
= y)⇒ f(x)

n
= f(y)

Intuitively, applying a non-expansive function to some data will not suddenly
introduce differences between seemingly equal data. Elements that cannot be
distinguished by programs within n steps remain indistinguishable after apply-
ing f . The reason that contractive functions are interesting is that for every
contractive f : T → T with T inhabited, there exists a unique fixed-point fix(f)
such that fix(f) = f(fix(f)).

Definition 11. The category COFE consists of COFEs as objects, and non-
expansive functions as arrows.

Note that COFE is cartesian closed. In particular:

Definition 12. Given two COFEs T and U , the set of non-expansive functions{
f : T

ne−→ U
}

is itself a COFE with

f
n
= g , ∀x ∈ T. f(x)

n
= g(x)

Definition 13. A (bi)functor F : COFE → COFE is called locally non-expansive
if its action F1 on arrows is itself a non-expansive map. Similarly, F is called
locally contractive if F1 is a contractive map.

The function space (−)
ne−→ (−) is a locally non-expansive bifunctor. Note that

the composition of non-expansive (bi)functors is non-expansive, and the com-
position of a non-expansive and a contractive (bi)functor is contractive. The
reason contractive (bi)functors are interesting is that by America and Rutten’s
theorem [2, 7], they have a unique11 fixed-point.

RA

11 Uniqueness is not proven in Coq.
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Definition 14. A resource algebra (RA) is a tuple
(M,V ⊆M, |−| : M →M?, (·) : M ×M →M, (y) ⊆M ×M) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (ra-assoc)

∀a, b. a · b = b · a (ra-comm)

∀a. |a| ∈M ⇒ |a| · a = a (ra-core-id)

∀a. |a| ∈M ⇒ ||a|| = |a| (ra-core-idem)

∀a, b. |a| ∈M ∧ a 4 b⇒ |b| ∈M ∧ |a| 4 |b| (ra-core-mono)

∀a, b. (a · b) ∈ V ∧ |a| ∈M ∧ |b| ∈M ⇒
||a| · |b|| = |a| · |b| (ra-core-distrib)

∀a, b. (a · b) ∈ V ⇒ a ∈ V (ra-valid-op)

where M? ,M ] {>} a? · > , > · a? , a?

a 4 b , ∃c ∈M. b = a · c (ra-incl)

RAs are closely related to Partial Commutative Monoids (PCMs), with two key
differences:

1. The composition operation on RAs is total (as opposed to the partial compo-
sition operation of a PCM), but there is a specific subset V of valid elements
that is compatible with the composition operation (ra-valid-op).
This take on partiality is necessary when defining the structure of higher-
order ghost state, CMRAs, in the next subsection.

2. Instead of a single unit that is an identity to every element, we allow for
an arbitrary number of units, via a function |−| assigning to an element a
its (duplicable) core |a|, as demanded by ra-core-id. We further demand
that |−| is idempotent (ra-core-idem) and monotone (ra-core-mono) with
respect to the extension order, defined similarly to that for PCMs (ra-incl).
Notice that the domain of the core is M?, a set that adds a dummy element
> to M . Thus, the core can be partial : not all elements need to have a unit.
We use the metavariable a? to indicate elements of M?. We also lift the
composition (·) to M?. Partial cores help us to build interesting composite
RAs from smaller primitives.
Notice also that the core of an RA is a strict generalization of the unit
that any PCM must provide, since |−| can always be picked as a constant
function.

3. We add an aditional relation y that captures “taking a step” on a resource.
In most cases this will be the full relation, as we have no useful notion
of “stepping” such resources.But, for resources used for establishing refine-
ments, this will correspond to taking some kind of step in the source program.

Definition 15. It is possible to do a frame-preserving update from a ∈ M to
B ⊆M , written a B, if

∀a?
f ∈M?. a · a?

f ∈ V ⇒ ∃b ∈ B. b · a?
f ∈ V

We further define a b , a {b}.
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The assertion a B says that every element a?
f compatible with a (we also call

such elements frames), must also be compatible with some b ∈ B. Notice that a?
f

could be >, so the frame-preserving update can also be applied to elements that
have no frame. Intuitively, this means that whatever assumptions the rest of the
program is making about the state of γ, if these assumptions are compatible
with a, then updating to b will not invalidate any of these assumptions. Since
Iris ensures that the global ghost state is valid, this means that we can soundly
update the ghost state from a to a non-deterministically picked b ∈ B.

Definition 16. It is possible to do a frame-preserving step update from b ∈M
with a ∈M to B ⊆M ×M , written a, b � B, if

∀a?
f ∈M?. a · b · a?

f ∈ V ⇒ ∃(a′, b′) ∈ B. a′ · b′ · a?
f ∈ V ∧ by b′

We further define a, b � a′, b′ , a, b � {(a′, b′)}.

We can regard this as a transformation of two compatible resources a and b
in which we do a frame-preserving update on the first component a and a step
on the second component b.

CMRA

Definition 17. A CMRA is a tuple (M : COFE , (Vn ⊆M)n∈N,

|−| : M ne−→M?, (·) : M ×M ne−→M, ((yn) ⊆M ×M)n∈N) satisfying:

∀n, a, b. a n
= b ∧ a ∈ Vn ⇒ b ∈ Vn (cmra-valid-ne)

∀n,m. n ≥ m⇒ Vn ⊆ Vm (cmra-valid-mono)

∀n,m. n ≥ m⇒yn⊆ym (cmra-step-mono)

∀a, b, c. (a · b) · c = a · (b · c) (cmra-assoc)

∀a, b. a · b = b · a (cmra-comm)

∀a. |a| ∈M ⇒ |a| · a = a (cmra-core-id)

∀a. |a| ∈M ⇒ ||a|| = |a| (cmra-core-idem)

∀a, b. |a| ∈M ∧ a 4 b⇒ |b| ∈M ∧ |a| 4 |b| (cmra-core-mono)

∀n, a, b. (a · b) ∈ Vn ∧ |a| ∈M ∧ |b| ∈M ⇒

||a| · |b|| n= |a| · |b| (cmra-core-distrib)

∀n, a, b. (a · b) ∈ Vn ⇒ a ∈ Vn (cmra-valid-op)

∀n, a, b1, b2. a ∈ Vn ∧ a
n
= b1 · b2 ⇒

∃c1, c2. a = c1 · c2 ∧ c1
n
= b1 ∧ c2

n
= b2 (cmra-extend)

where

a 4 b , ∃c. b = a · c (cmra-incl)

a
n
4 b , ∃c. b n

= a · c (cmra-inclN)
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This is a natural generalization of RAs over COFEs. All operations have
to be non-expansive, and the validity predicate V can now also depend on the
step-index. We define the plain V as the “limit” of the Vn:

V ,
⋂
n∈N
Vn

The extension axiom ( cmra-extend). Notice that the existential quantification
in this axiom is constructive, i.e., it is a sigma type in Coq. The purpose of this
axiom is to compute a1, a2 completing the following square:

a b

b1 · b2a1 · a2

n
=

n
=

= =

where the n-equivalence at the bottom is meant to apply to the pairs of elements,
i.e., we demand a1

n
= b1 and a2

n
= b2. In other words, extension carries the

decomposition of b into b1 and b2 over the n-equivalence of a and b, and yields
a corresponding decomposition of a into a1 and a2. This operation is needed to
prove that . commutes with separating conjunction:

.(P ∗Q)⇔ .P ∗ .Q

Definition 18. An element ε of a CMRA M is called the unit of M if it satisfies
the following conditions:

1. ε is valid:
∀n. ε ∈ Vn

2. ε is a left-identity of the operation:
∀a ∈M. ε · a = a

3. ε is a discrete COFE element
4. ε is its own core:
|ε| = ε

Lemma 19. If M has a unit ε, then the core |−| is total, i.e., ∀a. |a| ∈M .

Definition 20. It is possible to do a frame-preserving update from a ∈ M to
B ⊆M , written a B, if

∀n, a?
f . a · a?

f ∈ Vn ⇒ ∃b ∈ B. b · a?
f ∈ Vn

We further define a b , a {b}.

Definition 21. It is possible to do a frame-preserving step update from b ∈M
with a ∈M to B ⊆M ×M , written a � B, if

∀n, a?
f . a · b · a?

f ∈ Vn ⇒ ∃(a′, b′) ∈ B. a′ · b′ · a?
f ∈ Vn ∧ byn b′

We further define a, b � a′, b′ , a � {(a′, b′)}.
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Note that for RAs, this and the RA-based definition of a frame-preserving
update and frame-preserving step update coincide.

Definition 22. A CMRA M is discrete if it satisfies the following conditions:

1. M is a discrete COFE
2. V ignores the step-index:
∀a ∈M.a ∈ V0 ⇒ ∀n, a ∈ Vn

Note that every RA is a discrete CMRA, by picking the discrete COFE for the
equivalence relation. Furthermore, discrete CMRAs can be turned into RAs by
ignoring their COFE structure, as well as the step-index of V.

Definition 23. A function f : M1 → M2 between two CMRAs is monotone
(written f : M1

mon−−→M2) if it satisfies the following conditions:

1. f is non-expansive
2. f preserves validity:
∀n, a ∈M1. a ∈ Vn ⇒ f(a) ∈ Vn

3. f preserves CMRA inclusion:
∀a ∈M1, b ∈M1. a 4 b⇒ f(a) 4 f(b)

Definition 24. The category CMRA consists of CMRAs as objects, and mono-
tone functions as arrows.

Note that every object/arrow in CMRA is also an object/arrow of COFE . The
notion of a locally non-expansive (or contractive) bifunctor naturally generalizes
to bifunctors between these categories.

A.2 COFE constructions

Next (type-level later) Given a COFE T , we define IT as follows (using a
datatype-like notation to define the type):

IT , next(x : T )

next(x)
n
= next(y) , n = 0 ∨ x n−1

= y

Note that in the definition of the carrier IT , next is a constructor (like the
constructors in Coq), i.e., this is short for {next(x) |x ∈ T}.
I(−) is a locally contractive functor from COFE to COFE .

Uniform Predicates Given a CMRA M , we define the COFE UPred(M) of
uniform predicates over M as follows:

UPred(M) ,

{
ϕ : N×M×M → Prop

∣∣∣∣∣ (∀n, x, y, x′, y′. ϕ(n, x, y) ∧ x 4 x′ ∧ y n
= y′ ⇒ ϕ(n, x′, y′))∧

(∀n,m, x, y. ϕ(n, x, y) ∧ x ∈ Vm ∧ y ∈ Vm ⇒ ϕ(m,x, y))

}
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One way to understand this definition is to re-write it a little. We start
by defining the COFE of step-indexed propositions: For every step-index, the
proposition either holds or does not hold.

SProp , ℘↓(N)

, {X ∈ ℘(N) | ∀n,m. n ≥ m⇒ n ∈ X ⇒ m ∈ X}

X
n
= Y , ∀m ≤ n.m ∈ X ⇔ m ∈ Y

Notice that this notion of SProp is already hidden in the validity predicate Vn of
a CMRA: We could equivalently require every CMRA to define V−(−) : M

ne−→
SProp, replacing cmra-valid-ne and cmra-valid-mono.

Now we can rewrite UPred(M) as step-indexed predicates over pairs of M
eleements, which is “monotone” in a certain sense with respect to the first ele-
ment:

UPred(M) ∼= M
mon−−→M →SProp

,

{
ϕ : M

ne−→M
ne−→SProp

∣∣∣∣∣ ∀n,m, x, y, x′. n ∈ ϕ(x) ∧ x 4 x′ ∧m ≤ n ∧ x′ ∈ Vm
⇒ m ∈ ϕ(x′, y)

}

A.3 RA and CMRA constructions

When describing a CMRA construction, unless specified otherwise, the step re-
lation is taken to be the full relation.

Product Given a family (Mi)i∈I of CMRAs (I finite), we construct a CMRA
for the product

∏
i∈IMi by lifting everything pointwise.

Frame-preserving updates on the Mi lift to the product:

prod-update
a Mi

B

f [i ↪→ a] {f [i ↪→ b] | b ∈ B}

Finite partial function Given some infinite countable K and some CMRA

M , the set of finite partial functions K
fin−⇀ M is equipped with a COFE and

CMRA structure by lifting everything pointwise.
We obtain the following frame-preserving updates:

fpfn-alloc-strong
G infinite a ∈ V
∅ {[γ ↪→ a] | γ ∈ G}

fpfn-alloc
a ∈ V

∅ {[γ ↪→ a] | γ ∈ K}

fpfn-update
a M B

f [i ↪→ a] {f [i ↪→ b] | b ∈ B}

Above, V refers to the validity of M .

K
fin−⇀ (−) is a locally non-expansive functor from CMRA to CMRA.
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Agreement Given some COFE T , we define Ag(T ) as follows:

Ag(T ) , {(c, V ) ∈ (N→ T )× SProp} / ∼
where a ∼ b , a.V = b.V ∧ ∀n. n ∈ a.V ⇒ a.c(n)

n
= b.c(n)

a
n
= b , (∀m ≤ n.m ∈ a.V ⇔ m ∈ b.V ) ∧ (∀m ≤ n.m ∈ a.V ⇒ a.c(m)

m
= b.c(m))

Vn ,
{
a ∈ Ag(T )

∣∣∣n ∈ a.V ∧ ∀m ≤ n. a.c(n)
m
= a.c(m)

}
|a| , a

a · b ,
(
a.c,

{
n
∣∣∣n ∈ a.V ∧ n ∈ b.V ∧ a n

= b
})

Ag(−) is a locally non-expansive functor from COFE to CMRA.
You can think of the c as a chain of elements of T that has to converge only

for n ∈ V steps. The reason we store a chain, rather than a single element, is
that Ag(T ) needs to be a COFE itself, so we need to be able to give a limit
for every chain of Ag(T ). However, given such a chain, we cannot constructively
define its limit: Clearly, the V of the limit is the limit of the V of the chain. But
what to pick for the actual data, for the element of T? Only if V = N we have a
chain of T that we can take a limit of; if the V is smaller, the chain “cancels”,
i.e., stops converging as we reach indices n /∈ V . To mitigate this, we apply the
usual construction to close a set; we go from elements of T to chains of T .

We define an injection ag into Ag(T ) as follows:

ag(x) ,
{

c , λ . x,V , N
}

There are no interesting frame-preserving updates for Ag(T ), but we can show
the following:

ag-val

ag(x) ∈ Vn
ag-dup

ag(x) = ag(x) · ag(x)
ag-agree

ag(x) · ag(y) ∈ Vn ⇒ x
n
= y

Exclusive CMRA Given a COFE T equipped with a step-indexed relation
(yn), we define a CMRA Ex(T ) such that at most one x ∈ T can be owned:

Ex(T ) , ex(T ) +⊥
Vn , {a ∈ Ex(T ) | a 6= ⊥}

All cases of composition go to ⊥.

|ex(x)| , > |⊥| , ⊥

Remember that > is the “dummy” element in M? indicating (in this case) that
ex(x) has no core.

The step-indexed equivalence is inductively defined as follows:

x
n
= y

ex(x)
n
= ex(y)

⊥ n
= ⊥
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Ex(−) is a locally non-expansive functor from COFE to CMRA.
We obtain the following frame-preserving update:

ex-update

ex(x) ex(y)

We lift the stepping relation to:

xyn y

ex(x) yn ex(y)

STS with tokens Given a state-transition system (STS, i.e., a directed graph)
(S,→ ⊆ S × S), a set of tokens T , and a labeling L : S → ℘(T ) of protocol-
owned tokens for each state, we construct an RA modeling an authoritative
current state and permitting transitions given a bound on the current state and
a set of locally-owned tokens.

The construction follows the idea of STSs as described in CaReSL [39]. We
first lift the transition relation to S × ℘(T ) (implementing a law of token con-
servation) and define a stepping relation for the frame of a given token set:

(s, T )→ (s′, T ′) , s→ s′ ∧ L(s) ] T = L(s′) ] T ′

s
T−→ s′ , ∃T1, T2. T1 # L(s) ∪ T ∧ (s, T1)→ (s′, T2)

We further define closed sets of states (given a particular set of tokens) as
well as the closure of a set:

closed(S, T ) , ∀s ∈ S.L(s) # T ∧
(
∀s′. s T−→ s′ ⇒ s′ ∈ S

)
↑(S, T ) ,

{
s′ ∈ S

∣∣∣∣∃s ∈ S. s T−→∗ s′
}

The STS RA is defined as follows

M , {auth((s, T ) ∈ S × ℘(T )) | L(s) # T}+

{frag((S, T ) ∈ ℘(S)× ℘(T )) | closed(S, T ) ∧ S 6= ∅}+⊥
frag(S1, T1) · frag(S2, T2) , frag(S1 ∩ S2, T1 ∪ T2) if T1 # T2 and S1 ∩ S2 6= ∅

frag(S, T ) · auth(s, T ′) , auth(s, T ′) · frag(S, T ) , auth(s, T ∪ T ′) if T # T ′ and s ∈ S
|frag(S, T )| , frag(↑(S, ∅), ∅)
|auth(s, T )| , frag(↑({s} , ∅), ∅)

ay a′ , ∃s, T, b, s′, T ′, b′. a = auth(s, T ) · b ∧ a′ = auth(s′, T ′) · b′ ∧
(s, T )→∗ (s′, T ′)

The remaining cases are all ⊥.
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We will need the following frame-preserving update:

sts-step
(s, T )→∗ (s′, T ′)

auth(s, T ) auth(s′, T ′)

sts-weaken
closed(S2, T2) S1 ⊆ S2 T2 ⊆ T1

frag(S1, T1) frag(S2, T2)

At the moment we do not make use of the non-trivial step structure on
STS’s – all instances of STS’s that are used in our present proofs are wrapped
in another construction that makes the step structure trivial.

The core is not a homomorphism. The core of the STS construction is only
satisfying the RA axioms because we are not demanding the core to be a
homomorphism—all we demand is for the core to be monotone with respect
to the ra-incl and have ra-core-distrib property. This last rule is kind of like
homomorphism for elements that are already cores, which is weaker than normal
homomorphism.

In other words, the following does not hold for the STS core as defined above:

|a| · |b| = |a · b|

To see why, consider the following STS:

s1 s2 s3
s4

[t1,t2]

Now consider the following two elements of the STS RA:

a , frag({s1, s2} , {t1}) b , frag({s1, s3} , {t2})

We have:

a · b = frag({s1} , {t1,t2}) |a| = frag({s1, s2, s4} , ∅)

|b| = frag({s1, s3, s4} , ∅) |a| · |b| = frag({s1, s4} , ∅) 6= |a · b| = frag({s1} , ∅)

A.4 Language

A language Λ consists of a set Expr of expressions (metavariable e), a set Val of
values (metavariable v), and a set State of states (metvariable σ) such that

– There exist functions val2expr : Val → Expr and expr2val : Expr ⇀ val
(notice the latter is partial), such that

∀e, v. expr2val(e) = v ⇒ val2expr(v) = e ∀v. expr2val(val2expr(v)) = v

– There exists a primitive reduction relation

(−,− → −,−,−) ⊆ Expr× State× Expr× State× (Expr ] {⊥})

We will write e1, σ1 → e2, σ2 for e1, σ1 → e2, σ2,⊥.
A reduction e1, σ1 → e2, σ2, ef indicates that, when e1 reduces to e2, a new
thread ef is forked off.
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– All values are stuck:

e, → , , ⇒ expr2val(e) = ⊥

Definition 25. An expression e and state σ are reducible (written red(e, σ)) if

∃e2, σ2, ef . e, σ → e2, σ2, ef

Definition 26. An expression e is said to be atomic if it reduces in one step to
a value:

∀σ1, e2, σ2, ef . e, σ1 → e2, σ2, ef ⇒ ∃v2. expr2val(e2) = v2

Definition 27 (Context). A function K : Expr → Expr is a context if the
following conditions are satisfied:

1. K does not turn non-values into values:
∀e. expr2val(e) = ⊥ ⇒ expr2val(K(e)) = ⊥

2. One can perform reductions below K:
∀e1, σ1, e2, σ2, ef . e1, σ1 → e2, σ2, ef ⇒ K(e1), σ1 → K(e2), σ2, ef

3. Reductions stay below K until there is a value in the hole:
∀e′1, σ1, e2, σ2, ef . expr2val(e′1) = ⊥ ∧ K(e′1), σ1 → e2, σ2, ef ⇒ ∃e′2. e2 =
K(e′2) ∧ e′1, σ1 → e′2, σ2, ef

Concurrent language For any language Λ, we define the corresponding thread-
pool semantics. The step relation for thread pool configurations is indexed by
the number of the thread that performed a step.

Machine syntax

T ∈ ThreadPool ,
⋃
n

Exprn

ρ ∈ Config , ThreadPool× State

Machine reduction [T ];σ
i→ [T ′];σ′

e1, σ1 → e2, σ2, ef ef 6= ⊥ |T | = i

[T ++ [e1] ++ T ′];σ1
i→ [T ++ [e2] ++ T ′ ++ [ef ]];σ2

e1, σ1 → e2, σ2 |T | = i

[T ++ [e1] ++ T ′];σ1
i→ [T ++ [e2] ++ T ′];σ2

Definition 28. We say thread index i is enabled in [T ];σ if there exists T ′ and

σ′ such that [T ];σ
i→ [T ′];σ′.
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Definition 29. A diverging execution12 of [T ];σ is a function F : N→ Config× N
such that:

1. F (0) = ([T ];σ, i) for some i.
2. For all n, if F (n) = ([Tn];σn, j) and F (n + 1) = ([Tn+1];σn+1, j

′) then

[Tn];σn
j→ [Tn+1];σn+1.

Definition 30. We say that thread index i is eventually always enabled in a di-
verging execution F if there exists N such that ∀n ≥ N , i is enabled in π1(F (n)).

Definition 31. We say that thread index i always eventually steps in a diverging
execution F if for all n, there exists n′ ≥ n such that π2(F (n′)) = i.

Definition 32. A diverging execution is (weakly) fair if for all i, if i is even-
tually always enabled in F , then i always eventually steps in F .

A.5 Logic

To instantiate Iris, you need to define the following parameters:

– A language Λ, and
– a locally contractive bifunctorΣ : COFE → CMRA defining the ghost state,

such that for all COFEs A, the CMRA Σ(A) has a unit. (By Lemma 19,
this means that the core of Σ(A) is a total function.)

As usual for higher-order logics, you can furthermore pick a signature S =
(T ,F ,A) to add more types, symbols and axioms to the language. You have
to make sure that T includes the base types:

T ⊇ {Val,Expr,State,M, InvName, InvMask,Prop}

Elements of T are ranged over by T .
Each function symbol in F has an associated arity comprising a natural

number n and an ordered list of n + 1 types τ (the grammar of τ is defined
below, and depends only on T ). We write

F : τ1, ... , τn → τn+1 ∈ F

to express that F is a function symbol with the indicated arity.
Furthermore, A is a set of axioms, that is, terms t of type Prop. Again, the

grammar of terms and their typing rules are defined below, and depends only
on T and F , not on A. Elements of A are ranged over by A.

12 This may also be defined co-inductively; in the Coq formalization we use a co-
inductive definition and give the definition here as a derived one.
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Grammar

Syntax. Iris syntax is built up from a signature S and a countably infinite set
Var of variables (ranged over by metavariables x, y, z):

τ ::= T | 1 | τ × τ | τ → τ

t, P, ϕ ::= x | F (t1, ... , tn) | () | (t, t) | πi t | λx : τ. t | t(t) | ε | |t| | t · t |
False | True | Emp | t =τ t | P ⇒ P | P ∧ P | P ∨ P | P ∗ P | P —∗ P |
µx : τ. t | ∃x : τ. P | ∀x : τ. P |

P
t | t | t L | V(t) | Stopped | V(t) | Phy(t) | �P | A(P ) | .P | |Vt t

P | |VVt t
P | wpt t {x. t}

Recursive predicates must be guarded : in µx. t, the variable x can only appear
under the later . modality.

Note that �, . bind more tightly than ∗, —∗ , ∧, ∨, and ⇒. We will write
|VtP for |Vt t

P , and similarly for |VVtP . If we omit the mask, then it is >
for weakest precondition wp e {x. P} and ∅ for primitive view shifts |VP and
primitive step shifts |VVP .

Some propositions are timeless, which intuitively means that step-indexing
does not affect them. This is a meta-level assertion about propositions, defined
as follows:

Γ ` timeless(P ) , Γ | .P ` P ∨ .False

Similarly, some propositions are affine timeless, which means that step-indexing
does not affect them when under an affine modality :

Γ ` atimeless(P ) , Γ | A(.P ) ` A(P ) ∨ .False

Metavariable conventions. We introduce additional metavariables ranging over
terms and generally let the choice of metavariable indicate the term’s type:

metavariable type

t, u arbitrary

v, w Val

e Expr

σ State

metavariable type

ι InvName

E InvMask

a, b M

P,Q,R Prop

ϕ,ψ, ζ τ → Prop (when τ is clear from context)

Variable conventions. We assume that, if a term occurs multiple times in a
rule, its free variables are exactly those binders which are available at every
occurrence.
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Types Iris terms are simply-typed. The judgment Γ ` t : τ expresses that, in
variable context Γ , the term t has type τ .

A variable context, Γ = x1 : τ1, ... , xn : τn, declares a list of variables and
their types. In writing Γ, x : τ , we presuppose that x is not already declared in
Γ .

Well-typed terms Γ `S t : τ

x : τ ` x : τ
Γ ` t : τ

Γ, x : τ ′ ` t : τ

Γ, x : τ ′, y : τ ′ ` t : τ

Γ, x : τ ′ ` t[x/y] : τ

Γ1, x : τ ′, y : τ ′′, Γ2 ` t : τ

Γ1, x : τ ′′, y : τ ′, Γ2 ` t[y/x, x/y] : τ

Γ ` t1 : τ1 · · · Γ ` tn : τn F : τ1, ... , τn → τn+1 ∈ F
Γ ` F (t1, ... , tn) : τn+1

Γ ` () : 1

Γ ` t : τ1 Γ ` u : τ2

Γ ` (t, u) : τ1 × τ2
Γ ` t : τ1 × τ2 i ∈ {1, 2}

Γ ` πi t : τi

Γ, x : τ ` t : τ ′

Γ ` λx. t : τ → τ ′

Γ ` t : τ → τ ′ u : τ

Γ ` t(u) : τ ′
Γ ` ε : M

Γ ` a : M

Γ ` |a| : M
Γ ` a : M Γ ` b : M

Γ ` a · b : M

Γ ` False : Prop Γ ` True : Prop Γ ` Emp : Prop

Γ ` t : τ Γ ` u : τ

Γ ` t =τ u : Prop

Γ ` P : Prop Γ ` Q : Prop

Γ ` P ⇒ Q : Prop

Γ ` P : Prop Γ ` Q : Prop

Γ ` P ∧Q : Prop

Γ ` P : Prop Γ ` Q : Prop

Γ ` P ∨Q : Prop

Γ ` P : Prop Γ ` Q : Prop

Γ ` P ∗Q : Prop

Γ ` P : Prop Γ ` Q : Prop

Γ ` P —∗ Q : Prop

Γ, x : τ ` t : τ x is guarded in t

Γ ` µx : τ. t : τ

Γ, x : τ ` P : Prop

Γ ` ∃x : τ. P : Prop

Γ, x : τ ` P : Prop

Γ ` ∀x : τ. P : Prop

Γ ` P : Prop Γ ` ι : InvName

Γ ` P ι
: Prop

Γ ` a : M

Γ ` a : Prop

Γ ` a : τ τ is a CMRA

Γ ` V(a) : Prop

Γ ` σ : State

Γ ` Phy(σ) : Prop

Γ ` P : Prop

Γ ` �P : Prop



42 Joseph Tassarotti, Ralf Jung, and Robert Harper

Γ ` P : Prop

Γ ` A(P ) : Prop

Γ ` P : Prop

Γ ` .P : Prop

Γ ` P : Prop Γ ` E : InvMask Γ ` E ′ : InvMask

Γ ` |VE E′
P : Prop

Γ ` P : Prop Γ ` E : InvMask Γ ` E ′ : InvMask

Γ ` |VVE E′
P : Prop

Γ ` e : Expr Γ, x : Val ` t : Prop Γ ` E : InvMask

Γ ` wpE e {x. t} : Prop

Proof rules The judgment Γ | Θ ` P says that with free variables Γ , propo-
sition P holds whenever all assumptions Θ hold. We implicitly assume that an
arbitrary variable context, Γ , is added to every constituent of the rules. Fur-
thermore, an arbitrary boxed assertion context �Θ may be added to every con-
stituent. Axioms Γ | P a` Q indicate that both Γ | P ` Q and Γ | Q ` P can
be derived.

Γ | Θ ` P

Laws of intuitionistic higher-order logic with equality. This is entirely standard.

Asm
P ∈ Θ
Θ ` P

Eq

Θ ` P Θ ` t =τ t
′

Θ ` P [t′/t]

Refl

Θ ` t =τ t

⊥E
Θ ` False

Θ ` P

>I
Θ ` True

∧I
Θ ` P Θ ` Q

Θ ` P ∧Q

∧EL
Θ ` P ∧Q
Θ ` P

∧ER
Θ ` P ∧Q
Θ ` Q

∨IL
Θ ` P

Θ ` P ∨Q

∨IR
Θ ` Q

Θ ` P ∨Q

∨E
Θ ` P ∨Q Θ,P ` R Θ,Q ` R

Θ ` R

⇒I
Θ,P ` Q
Θ ` P ⇒ Q

⇒E
Θ ` P ⇒ Q Θ ` P

Θ ` Q

∀I
Γ, x : τ | Θ ` P
Γ | Θ ` ∀x : τ. P

∀E
Γ | Θ ` ∀x : τ. P Γ ` t : τ

Γ | Θ ` P [t/x]

∃I
Γ | Θ ` P [t/x] Γ ` t : τ

Γ | Θ ` ∃x : τ.P

∃E
Γ | Θ ` ∃x : τ. P Γ, x : τ | Θ,P ` Q

Γ | Θ ` Q

Furthermore, we have the usual η and β laws for projections, λ and µ.
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Laws of bunched implications.

Emp ∗ P a` P
P ∗Q a` Q ∗ P

(P ∗Q) ∗R a` P ∗ (Q ∗R)

∗-mono
P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗Q2

—∗ I-E
P ∗Q ` R
P ` Q —∗ R

Laws for ghosts and physical resources.

a ∗ b a` a · b
a ` V(a)

True ` ε

Phy(σ) ∗ Phy(σ′) ` False
∀n.@a′. ayn a′

a
L ` Stopped

Similar rules hold for a
L
.

Laws for the later modality.

.-mono
Θ ` P
Θ ` .P

Löb

(.P ⇒ P ) ` P
U-Löb

A(�(A(�.P ) —∗ A(�P ))) ` �P

.-∃
τ is inhabited

.∃x : τ. P ` ∃x : τ. .P

.(P ∧Q) a` .P ∧ .Q

.(P ∨Q) a` .P ∨ .Q

.∀x. P a` ∀x. .P
∃x. .P ` .∃x. P

.(P ∗Q) a` .P ∗ .Q

A type τ being inhabited means that ` t : τ is derivable for some t.

t or t′ is a discrete COFE element

timeless(t =τ t
′)

a is a discrete COFE element

timeless(a)

a is an element of a discrete CMRA

timeless(V(a))
timeless(Phy(σ))

Γ ` timeless(Q)

Γ ` timeless(P ⇒ Q)

Γ ` timeless(Q)

Γ ` timeless(P —∗ Q)

Γ, x : τ ` timeless(P )

Γ ` timeless(∀x : τ. P )

Γ, x : τ ` timeless(P )

Γ ` timeless(∃x : τ. P )
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t or t′ is a discrete COFE element

atimeless(t =τ t
′)

a is a discrete COFE element

atimeless(a)

a is an element of a discrete CMRA

atimeless(V(a))
atimeless(Phy(σ))

Γ ` atimeless(Q)

Γ ` atimeless(P ⇒ Q)

Γ ` atimeless(Q)

Γ ` atimeless(P —∗ Q)

Γ ` atimeless(P ) Γ ` atimeless(Q)

Γ ` atimeless(P ∧Q)

Γ ` atimeless(A(P )) ∗ Γ ` atimeless(A(Q))

Γ ` atimeless(A(P ) ∗ A(Q))

Γ ` atimeless(P ) Γ ` atimeless(Q)

Γ ` atimeless(P ∨Q)

Γ, x : τ ` atimeless(P )

Γ ` atimeless(∀x : τ. P )

Γ, x : τ ` atimeless(P )

Γ ` atimeless(∃x : τ. P )

Laws for the always/relevant modality.

�I
�Θ ` P
�Θ ` �P

�E
�P ` P

�(P ∧Q) ` �(P ∗Q)

�P ∧Q ` �P ∗Q
�.P a` �.�P
�.P ` .�P

�P ∗�Q ` �P ∗Q
�P ` �P ∗�P

�(P ∧Q) a` �P ∧�Q
�(P ∨Q) a` �P ∨�Q
�∃x. P a` ∃x.�P

t =τ t
′ ` �t =τ t

′ P
ι ` �P ι |a| ` � |a| V(a) ` �V(a)

τ is inhabited

�∀x : τ. P a` ∀x.�P
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Laws for the affine modality.

A(P ) ` P

A(True) a` Emp

A(A(P )) a` A(P )

P ∗ A(Q) ` P

A(A(P ) ∗ A(Q)) a` A(P ) ∗ A(Q)

A(P ) ∧Q a` A(P ∧Q)

A(.P ) a` A(.A(P ))

A(.P ) ` .A(P )

A(.(A(P ) ∗ A(Q))) ` A(.P ) ∗ A(.P )

A(�P ) a` �A(P )

t =τ t
′ ` A(t =τ t

′)

P
ι ` A(P

ι
)

|a| ` A( |a|)
V(a) ` A(V(a))

τ is inhabited

A(∀x : τ. P ) a` ∀x.A(P )

τ is inhabited

A(∃x : τ. P ) a` ∃x.A(P )

Laws of primitive view shifts.

pvs-intro

P ` |VE P

pvs-mono
P ` Q

|VE1 E2P ` |VE1 E2Q

pvs-timeless
timeless(P )

.P ` |VE P

pvs-atimeless
atimeless(P )

A(.P ) ` |VEA(P )

pvs-trans
E2 ⊆ E1 ∪ E3

|VE1 E2 |VE2 E3P ` |VE1 E3P

pvs-mask-frame

|VE1 E2P ` |VE1]Ef E2]Ef P

pvs-frame

Q ∗ |VE1 E2P ` |VE1 E2Q ∗ P

pvs-allocI
E is infinite

A(.P ) ` |VE ∃ι ∈ E . P
ι

pvs-openI

P
ι ` |V{ι} ∅A(.P )

pvs-closeI

P
ι ∗ A(.P ) ` |V∅ {ι}Emp

pvs-update
a B

a ` |VE ∃b ∈ B. b

pvs-affine

A( |VE1 E2P ) a` |VE1 E2A(P )
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Laws of primitive step shifts.

psvs-intro

P ` |VE P

psvs-mono
P ` Q

|VVE1 E2P ` |VVE1 E2Q

pvs-psvs
E2 ⊆ E1 ∪ E3

|VE1 E2 |VVE2 E3P ` |VVE1 E3P

psvs-pvs
E2 ⊆ E1 ∪ E3

|VVE1 E2 |VE2 E3P ` |VVE1 E3P

psvs-mask-frame

|VVE1 E2P ` |VVE1]Ef E2]Ef P

psvs-frame

A(Q) ∗ |VVE1 E2P ` |VVE1 E2 (A(Q) ∗ P )

psvs-step
a, b � B

a ∗ b L ` |VVE ∃a
′, b′ ∈ B. a′ ∗ b′

L

Laws of weakest preconditions.

wp-value

P [v/x] ` wpE v {x. P}

wp-mono
E1 ⊆ E2 x : val | P ` Q

wpE1 e {x. P} ` wpE2 e {x.Q}

pvs-wp

|VEwpE e {x. P} ` wpE e {x. P}
wp-pvs

wpE e {x. |VE P} ` wpE e {x. P}

wp-atomic
E2 ⊆ E1 atomic(e)

|VE1 E2wpE2 e {x. |V
E2 E1P} ` wpE1 e {x. P}

wp-frame

A(Q) ∗ wpE e {x. P} ` wpE e {x.A(Q) ∗ P}

wp-frame-step
expr2val(e) = ⊥ E2 ⊆ E1

wpE e {x. P} ∗ A( |VE1 E2 . |VE2 E1Q) ` wpE]E1 e {x.A(Q) ∗ P}

wp-bind
K is a context

wpE e {x.wpE K(val2expr(x)) {y. P}} ` wpE K(e) {y. P}
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Lifting of operational semantics.

wp-lift-step
E2 ⊆ E1 expr2val(e1) = ⊥

|VE1 E2 ∃σ1.A(red(e1, σ1) ∧ .Phy(σ1)) ∗
.∀e2, σ2, ef . ((e1, σ1 → e2, σ2, ef) ∧ Phy(σ2)) —∗ |VVE2 E1wpE1 e2 {x. P} ∗ wp> ef { .Stopped}

` wpE1 e1 {x. P}

wp-lift-pure-step
expr2val(e1) = ⊥ ∀σ1. red(e1, σ1) ∀σ1, e2, σ2, ef . e1, σ1 → e2, σ2, ef ⇒ σ1 = σ2

.∀σ, e2, ef . (e1, σ → e2, σ, ef) —∗ |VVE1wpE1 e2 {x. P} ∗ wp> ef { .Stopped} ` wpE1 e1 {x. P}

Notice that primitive view shifts cover everything to their right, i.e., |VP ∗Q ,
|V(P ∗Q), and similarly for primitive step shifts.

Here we define wpE ef {x. P} , Emp if ef = ⊥ (remember that our stepping
relation can, but does not have to, define a forked-off expression).

Adequacy

Finite Executions and Safety. The adequacy statement concerning functional
correctness reads as follows:

∀E , e, v, ϕ, σ, a, b, σ′, T ′.
(∀n. a · b ∈ Vn)⇒

(Phy(σ) ∗ a ∗ b L ` wpE e {x. ϕ(x)})⇒
[σ]; [e]→∗ [σ′]; [v] ++ T ′ ⇒
ϕ(v)

where ϕ is a meta-level predicate over values, i.e., it can mention neither re-
sources nor invariants.

Furthermore, the following adequacy statement shows that our weakest pre-
conditions imply that the execution never gets stuck : Every expression in the
thread pool either is a value, or can reduce further.

∀E , e, σ, a, b, σ′, T ′.
(∀n. a ∗ b ∈ Vn)⇒

(Phy(σ) ∗ a ∗ b L ` wpE e {x. ϕ(x)})⇒
[σ]; [e]→∗ [σ′];T ′ ⇒
∀e′ ∈ T ′. expr2val(e′) 6= ⊥ ∨ red(e′, σ′)

Notice that this is stronger than saying that the thread pool can reduce; we
actually assert that every non-finished thread can take a step.
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Diverging Executions. Remember that our goal is to show that if we have proved
wp e {x. Q} and e has a fair diverging execution, then there is a fair diverging
execution of some corresponding source program. Of course, there is no such
notion of a “source program” baked into the logic at this point yet.

All we have is the step relation yn on CMRA elements. The rules above for
wp e {x. Q} suggest that13 for each step e takes, we are required to perform a
step-shift, thereby performing reduction steps on CMRA resources.

We can lift the yn relation from CMRA elements to lists of CMRA elements,
much as we lift the per-thread step relation to an indexed relation on threadpools:

ai yn (a′i · af)

[a0, ... , ai, ... , ak] yn
i [a0, ... , a

′
i, ... , ak, af ]

ai yn a′i
[a0, ... , ai, ... , ak] yn

i [a0, ... , a
′
i, ... , ak]

In general we shall use A and B as metavariables for such lists of CMRA ele-

ments, and write∗A to represent the product of the elements of A.

Definition 33. We say index i is n-enabled in A if there exists B such that
Ayn

i B.

Somehow, we want to connect up these CMRA steps to steps in some source
language, for a suitably chosen CMRA. Still working a bit more abstractly than
that for the moment, let U be some COFE equipped with a family of relations

(
i→: U?×U?)i∈N. We can adapt all of our definitions about fairness to the setting

of this reduction on U?, e.g.:

Definition 34. We say index i is enabled in a ∈ U? if there exists b such that

a
i→ b.

Definition 35. A diverging execution of a is a function F : N→ U? × N such
that:

1. F (0) = (a, i) for some i.

2. For all n, if F (n) = (b, j) and F (n+ 1) = (b′, j′) then b
j→ b′.

and so on.

Definition 36. We say H : N → List M → U? is a step-preserving map if the
following conditions hold:

1. If i is enabled in H(n,A) then i is n-enabled in A.

2. If∗A ∈ Vn,∗B ∈ Vn, A yn
i B and H(n,A) ∈ U , then H(n,B) ∈ U

and H(n,A)
i→ H(n,B)

13 We shall see that this is indeed the case when we examine the definition of weakest
precondition in the model.
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3. If∗A ∈ Vn then ∀n′ ≤ n, H(n,A) = H(n′, A)

4. If H(n,A)
i→ H(n,B) then ∀n′ ≤ n, H(n′, A)

i→ H(n′, B)

Definition 37. U has bounded non-determinism if ∀a ∈ U , the set {b |∃i. a i→
b} is finite.

We are now able to state the infinite adequacy theorem:

Theorem 38. Assume U has bounded non-determinism under a step relation

(
i→: U? ×U?)i∈N. Let H be a step-preserving map to U . If [e];σ has a diverging

execution, and all of the following hold:

1. n > 2,

2. ∀n′. a · b ∈ Vn′ ,

3. Phy(σ) ∗ a ∗ b L ` wpE e {x. ϕ(x)}),

4. ∀x. ϕ(x) ` Stopped,

5. H(n, [b]) ∈ U

then there exists a diverging execution of H(n, [b]). Moreover, if the execution of
[e];σ was fair, so too is the execution of H(n, [b]).

A.6 Model and semantics

The semantics closely follows the ideas laid out in [6].

Generic model of base logic The base logic including equality, later, always,
and a notion of ownership is defined on UPred(M) for any CMRA M .

Interpretation of base assertions JΓ ` t : PropK : JΓ K ne−→ UPred(M)

The type UPred(M) is isomorphic to M
mon−−→M →SProp. We are thus going to

define the assertions as mapping pairs of CMRA elements to sets of step-indices.

We introduce an additional logical connective Own(a) and OwnL(a), which

will later be used to encode all of P
ι
, a , a

L
and Phy(σ).
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JΓ ` t =τ u : PropKγ , λ , b.
{
n
∣∣∣ JΓ ` t : τKγ

n
= JΓ ` u : τKγ ∧ b

n
= ε
}

JΓ ` False : PropKγ , λ , . ∅
JΓ ` True : PropKγ , λ , .N

JΓ ` Emp : PropKγ , λ , b.
{
n
∣∣∣ b n

= ε
}

JΓ ` P ∧Q : PropKγ , λa, b. JΓ ` P : PropKγ(a, b) ∩ JΓ ` Q : PropKγ(a, b)

JΓ ` P ∨Q : PropKγ , λa, b. JΓ ` P : PropKγ(a, b) ∪ JΓ ` Q : PropKγ(a, b)

JΓ ` P ⇒ Q : PropKγ , λa, b.

n
∣∣∣∣∣∣∣
∀m, a′.m ≤ n ∧ a 4 a′ ∧ a′ ∈ Vm ∧ b ∈ Vm ⇒

m ∈ JΓ ` P : PropKγ(a′, b)⇒
m ∈ JΓ ` Q : PropKγ(a′, b)


JΓ ` ∀x : τ. P : PropKγ , λa, b.

{
n
∣∣ ∀v ∈ JτK. n ∈ JΓ, x : τ ` P : PropKγ[x↪→v](a, b)

}
JΓ ` ∃x : τ. P : PropKγ , λa, b.

{
n
∣∣ ∃v ∈ JτK. n ∈ JΓ, x : τ ` P : PropKγ[x↪→v](a, b)

}
JΓ ` �P : PropKγ , λa, b. JΓ ` P : PropKγ(|a|, |b|) ∩

{
n
∣∣∣ b n

= |b|
}

JΓ ` A(P ) : PropKγ , λa, b. JΓ ` P : PropKγ(a, b) ∩
{
n
∣∣∣ b n

= ε
}

JΓ ` .P : PropKγ , λa, b. {n |n = 0 ∨ n− 1 ∈ JΓ ` P : PropKγ(a, b)}

JΓ ` P ∗Q : PropKγ , λa, b.

{
n

∣∣∣∣∣ ∃a1, a2, b1, b2. a
n
= a1 · a2 ∧ b

n
= b1 · b2 ∧

n ∈ JΓ ` P : PropKγ(a1, b1) ∧ n ∈ JΓ ` Q : PropKγ(a2, b2)

}

JΓ ` P —∗ Q : PropKγ , λa, b.

n
∣∣∣∣∣∣∣
∀m, a′, b′.m ≤ n ∧ a · a′ ∈ Vm ∧ b · b′ ∈ Vm ⇒

m ∈ JΓ ` P : PropKγ(a′, b′)⇒
m ∈ JΓ ` Q : PropKγ(a · a′, b · b′)


JΓ ` Own(a) : PropKγ , λa′, b.

{
n
∣∣∣ JΓ ` a′ : MK

n
4 a ∧ b n

= ε
}

JΓ ` OwnL(b) : PropKγ , λa, b′.
{
n
∣∣∣ b n

= b′
}

JΓ ` V(a) : PropKγ , λ , b.
{
n
∣∣∣ JΓ ` a : τK ∈ Vn ∧ b

n
= ε
}

Note: There are slight differences between the definition here and the version
in the Coq development. For instance, Own(a) in the Coq development does
not stipulate that the second component is in fact equivalent to ε, which makes
it non-affine; but in practice we almost always use A(Own(a)), so here we just
present a version equivalent to that.

For every definition, we have to show all the side-conditions: The maps have
to be non-expansive and monotone.
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Iris model

Semantic domain of assertions. The first complicated task in building a model of
full Iris is defining the semantic model of Prop. We start by defining the functor
that assembles the CMRAs we need to the global resource CMRA:

ResF(T op, T ) ,
{
w : N fin−⇀ Ag(IT ), π : Ex(State)?, g : Σ(T op, T )

}
Above, M? is the monoid obtained by adding a unit to M . (It’s not a coincidence
that we used the same notation for the range of the core; it’s the same type
either way: M + 1.) Remember that Σ is the user-chosen bifunctor from COFE
to CMRA (see §A.5). ResF(T op, T ) is a CMRA by lifting the individual CMRAs
pointwise. Furthermore, since Σ is locally contractive, so is ResF.

Now we can write down the recursive domain equation:

iPreProp ∼= UPred(ResF(iPreProp, iPreProp))

iPreProp is a COFE defined as the fixed-point of a locally contractive bifunctor.
This fixed-point exists and is unique by America and Rutten’s theorem [2, 7].
We do not need to consider how the object is constructed. We only need the
isomorphism, given by

Res , ResF(iPreProp, iPreProp)

Prop , UPred(Res)

ξ : Prop
ne−→ iPreProp

ξ−1 : iPreProp
ne−→ Prop

We then pick Prop as the interpretation of Prop:

JPropK , Prop

Interpretation of assertions. Prop is a UPred, and hence the definitions from
§A.6 apply. We only have to define the interpretation of the missing connectives,
the most interesting bits being primitive view shifts and weakest preconditions.

World satisfaction − |=− −− : ∆State×∆℘(N)× Res× Res
ne−→ SProp

pre-wsat(n, E , σ, R, r, s) , (r · s) ∈ Vn+1 ∧ r.π = ex(σ) ∧ dom(R) ⊆ E ∩ dom(r.w) ∧
∀ι ∈ E , P ∈ Prop. (r.w)(ι)

n+1
= ag(next(ξ(P )))⇒ n ∈ P (R(ι), ε)

σ |=E r, s , {0} ∪

{
n+ 1

∣∣∣∣∣∃R : N fin−⇀ Res. pre-wsat(n, E , σ, R, r ·
∏
ι

R(ι), s)

}

Notice that the assertion P corresponding to the world ι must be affine, in
the sense that n ∈ P (R(ι), ε). Without this stipulation, threads would be able to
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put linear resources inside invariants and STS interpretations. We prevent this
in the current formulation of the logic because otherwise the rules for dealing
with invariants would have to be stricter if we still wanted to establish fair
refinements.

Primitive view-shift pvs−
−(−) : ∆(℘(N))×∆(℘(N))× Prop

ne−→ Prop

pvsE2E1(P ) = λr, s.

{
n

∣∣∣∣∣ ∀rf , sf , k, Ef , σ. 0 < k ≤ n ∧ (E1 ∪ E2) # Ef ∧ k ∈ σ |=E1∪Ef r · rf , s · sf ⇒
∃r′. k ∈ P (r′, s) ∧ k ∈ σ |=E2∪Ef r′ · rf , s · sf

}

Primitive step-shift psvs−
−(−) : ∆(℘(N))×∆(℘(N))× Prop

ne−→ Prop

psvsE2E1(P ) = λr, s.

{
n

∣∣∣∣∣ ∀rf , sf , k, Ef , σ. 0 < k ≤ n ∧ (E1 ∪ E2) # Ef ∧ k ∈ σ |=E1∪Ef r · rf , s · sf ⇒
∃r′, s′. k ∈ P (r′, s′) ∧ k ∈ σ |=E2∪Ef r′ · rf , s

′ · sf ∧ syk s′

}

Weakest precondition wp−(−,−) : ∆(℘(N))×∆(Exp)× (∆(Val)
ne−→ Prop)

ne−→ Prop

wp is defined as the fixed-point of a contractive function.

pre-wp(wp)(E, e, ϕ) , λr, s.


n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀rf , sf ,m, Ef , σ. 0 ≤ m < n ∧ E # Ef ∧m+ 1 ∈ σ |=E∪Ef
r · rf , s · sf ⇒

(∀v. expr2val(e) = v ⇒ ∃r′.m+ 1 ∈ ϕ(v)(r
′
, s) ∧m+ 1 ∈ σ |=E∪Ef

r
′ · rf , s · sf ) ∧

(expr2val(e) = ⊥ ∧ 0 < m⇒ red(e, σ) ∧ ∀e2, σ2, ef . e, σ → e2, σ2, ef ⇒
∃r1, r2, s1, s2.m ∈ σ |=E∪Ef

r1 · r2 · rf ∧m ∈ wp(E, e2, ϕ)(r1, s1) ∧

((ef = ⊥ ∧ s2
m
= ε) ∨m ∈ wp(>, ef , λ . λ .N)(r2, s2)) ∧

s ym
s1 · s2


wpE(e, ϕ) , fix(pre-wp)(E, e, ϕ)

Interpretation of program logic assertions JΓ ` t : PropK : JΓ K ne−→ Prop P
ι
,

a and Phy(σ) are just syntactic sugar for forms of Own(−).

P
ι
, Own([ι ↪→ ag(next(ξ(P )))], ε, ε)

a , Own(ε, ε, a)

a
L
, OwnL(ε, ε, a)

Phy(σ) , Own(ε, ex(σ), ε)

JΓ ` |VE1 E2 P : PropKγ , pvs
JΓ`E2:InvMaskKγ
JΓ`E1:InvMaskKγ

(JΓ ` P : PropKγ)

JΓ ` |VVE1 E2 P : PropKγ , psvs
JΓ`E2:InvMaskKγ
JΓ`E1:InvMaskKγ

(JΓ ` P : PropKγ)

JΓ ` wpE e {x. P} : PropKγ , wpJΓ`E:InvMaskKγ (JΓ ` e : ExprKγ , λv. JΓ ` P : PropKγ[x↪→v])
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Remaining semantic domains, and interpretation of non-assertion terms. The
remaining domains are interpreted as follows:

JInvNameK , ∆N
JInvMaskK , ∆℘(N)

JMK , F (Prop)

JValK , ∆Val

JExprK , ∆Expr

JStateK , ∆State

J1K , ∆{()}
Jτ × τ ′K , JτK× JτK

Jτ → τ ′K , JτK ne−→ JτK

For the remaining base types τ defined by the signature S, we pick an object Xτ in COFE and
define

JτK , Xτ

For each function symbol F : τ1, ... , τn → τn+1 ∈ F , we pick a function JF K : Jτ1K× · · · × JτnK ne−→
Jτn+1K.

Interpretation of non-propositional terms JΓ ` t : τ K : JΓ K ne−→ Jτ K

JΓ ` x : τKγ , γ(x)

JΓ ` F (t1, ... , tn) : τn+1Kγ , JF K(JΓ ` t1 : τ1Kγ , ... , JΓ ` tn : τnKγ)

JΓ ` λx : τ. t : τ → τ
′Kγ , λu : JτK. JΓ, x : τ ` t : τKγ[x↪→u]

JΓ ` t(u) : τ
′Kγ , JΓ ` t : τ → τ

′Kγ(JΓ ` u : τKγ)

JΓ ` µx : τ. t : τKγ , fix(λu : JτK. JΓ, x : τ ` t : τKγ[x↪→u])

JΓ ` () : 1Kγ , ()

JΓ ` (t1, t2) : τ1 × τ2Kγ , (JΓ ` t1 : τ1Kγ , JΓ ` t2 : τ2Kγ)

JΓ ` πi(t) : τiKγ , πi(JΓ ` t : τ1 × τ2Kγ)

JΓ ` ε : MKγ , ε

JΓ ` |a| : MKγ , |JΓ ` a : MKγ |

JΓ ` a · b : MKγ , JΓ ` a : MKγ · JΓ ` b : MKγ

An environment Γ is interpreted as the set of finite partial functions ρ, with dom(ρ) = dom(Γ )
and ρ(x) ∈ JΓ (x)K.

Logical entailment. We can now define semantic logical entailment.

Interpretation of entailment JΓ | Θ ` P K : Prop

JΓ | Θ ` P K , ∀n ∈ N. ∀r, s ∈ Res. ∀γ ∈ JΓ K,(
∀Q ∈ Θ.n ∈ JΓ ` Q : PropKγ(r, s)

)
⇒ n ∈ JΓ ` P : PropKγ(r, s)

The soundness statement of the logic reads

Γ | Θ ` P ⇒ JΓ | Θ ` P K

A.7 Derived proof rules and other constructions

We will below abuse notation, using the term meta-variables like v to range
over (bound) variables of the corresponding type. We omit type annotations in
binders and equality, when the type is clear from context. We assume that the
signature S embeds all the meta-level concepts we use, and their properties, into
the logic. (The Coq formalization is a shallow embedding of the logic, so we have
direct access to all meta-level notions within the logic anyways.)
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Persistent/Relevant assertions.

Definition 39. An assertion P is persistent or relevant if P ` �P .

Of course, �P is persistent for any P . Furthermore, by the proof rules given
in §A.5, t = t′ as well as |a| , V(a) and P

ι
are persistent. Persistence is pre-

served by conjunction, disjunction, separating conjunction as well as universal
and existential quantification.

In our proofs, we will implicitly add and remove � from persistent assertions
as necessary.

Affine assertions.

Definition 40. An assertion P is affine if P ` A(P ).

In our proofs, we will implicitly add and remove A(−) from persistent asser-
tions as necessary.

Timeless assertions. We can show that the following additional closure proper-
ties hold for timeless assertions:

Γ ` timeless(P ) Γ ` timeless(Q)

Γ ` timeless(P ∧Q)

Γ ` timeless(P ) Γ ` timeless(Q)

Γ ` timeless(P ∨Q)

Γ ` timeless(P ) Γ ` timeless(Q)

Γ ` timeless(P ∗Q)

Γ ` timeless(P )

Γ ` timeless(�P )

Some similar rules apply for atimeless(-).

Program logic Hoare triples and view shifts are syntactic sugar for weakest
(liberal) preconditions and primitive view shifts, respectively:

{P } e {v.Q}E , A(�(P —∗ wpE e {λv.Q}))
P VE1 E2 Q , �(P ⇒ |VE1 E2Q)

P VVE1 E2 Q , �(P ⇒ |VVE1 E2Q)

P WVE1 E2 Q , P VE1 E2 Q ∧Q VE2 E1 P

We write just one mask for a view shift when E1 = E2. Clearly, all of these
assertions are persistent. The convention for omitted masks is similar to the
base logic: An omitted E is > for Hoare triples and ∅ for view shifts.

Derived Rules We omit many of the derived rules for Hoare triples, view shifts,
and step shifts. The interested reader can consult the Coq mechanization.

Global functor, ghost ownership, and namespaces For composability rea-
sons, Iris makes it possible to combine a collection of CMRAs to get a larger
“global” CMRA. This makes it possible to combine proofs that are done using
a certain CMRA M with ones that are done doing another CMRA M ′. We do
omit the descriptions of these mechanisms; the interested reader should consult
the original Iris 2.0 documentation.
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A.8 Refinement RA

We now briefly describe the RA used to model source assetions. This entire
section is new.

Fix a source language Λ. We say that a list of configurations, C is compatible
with a list of thread indices, L, written compat(C,L)L, if:

compat([], []) compat([ρ], [])
compat(C ++ [ρ], L) ρ

i→ ρ′

compat(C ++ [ρ, ρ′], L++ [i])

We define an RA Refine(Λ):

Refine(Λ) , View× Pfin(N)× List Config× List Nat

where View , {master, snapshot}

V ,

(v, S, C, L) ∈ Refine(Λ)

∣∣∣∣∣∣∣∣∣
(C = [] ∧ L = [] ∧ S = ∅) ∨
(∃C ′, T, σ. C = C ′, ([T ];σ) ∧

(∀i ∈ S, i < |T |) ∧
compat(C,L))


|(v, S, C, L)| , (snapshot, ∅, C, L)

(v, S, C, L) · (v′, S′, C ′, L′) , (max(v, v′), S ] S′,max(C,C ′),max(L,L)′)

where max(v, v′) is master if either v or v′ is master, and the maximum of two
lists is just the longer of the two. We have an additional proviso stating that
multiplication is only defined if all of the following hold:

1. Either v = snapshot or v′ = snapshot
2. If v = v′ = snapshot then ∃C ′′, L′′ such that either:

(a) C = C ′ ++ C ′′, L = L′ ++ L′′ and, ∀i ∈ S′, i 6∈ L′′, or
(b) C ′ = C ++ C ′′, L′ = L++ L′′ and ∀i ∈ S, i 6∈ L′′.

3. If v = snapshot and v′ = master then ∃C ′′, L′′ such that C ′ = C ++ C ′′,
L′ = L++ L′′ and ∀i ∈ S′, i 6∈ L′′.

4. If v = master and v′ = snapshot then ∃C ′′, L′′ such that C = C ′ ++ C ′′,
L = L′ ++ L′′ and, ∀i ∈ S, i 6∈ C ′′.

Intuitively, the second component of an element, S represents a set of thread
ID’s “owned” by this element, and the C and L are some prefix of an execution
of a source program. Then, condition one for multiplication being defined says
there can be at most one master. Condition two says that, among two snapshots,
one can be longer than the other, but the longer one cannot contain any addi-
tional steps by threads owned by the other. Condition three and four say that a
snapshot must be a prefix of master, subject to the constraint that the master
cannot contain any extra steps by threads owned by the snapshot.

The definition of y for this RA is somewhat complicated. Let us motivate it
in words – a reader that wants details is advised to consult the Coq formalization.
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Only snapshots may take steps. Intuitively, the snapshot is obligated to step
every thread it controls (i.e. every index in S) which can possibly take a step.
But, since the snapshot is only a partial prefix of the program execution, other
threads not controlled by this snapshot may have taken steps. Thus, we first
non-deterministically speculate some steps performed by other threads and then
perform all of the required steps for the owned threads. Finally, since performing
those steps may fork off new threads, we add the thread ids of the new threads
to S.

Of course, for extra flexibility, we are allowed to step each thread more than
once. We do not bake delay steps into this monoid. Rather, if we want delay
steps, we first transform Λ into a language Λ′ that has additional “stutter” steps
for delay.

Finally, we can interpret source as:

source(i, e) , ∃T, σ, C, L. (snapshot, {i} , C ++ [[T ];σ], L)
L ∧ (T [i] = e)

We also get an assertion SPhy(σ) for talking about the state of the assertion:

SPhy(σ) , ∃T,C, L. (master, ∅, C ++ [[T ];σ], L)

We can use this “large footprint” assertion about source programs to derive
smaller assertions, just as we do for the Phy(σ) assertion in Iris.

Finally, with some effort we can use this CMRA with the infinite adequacy
theorem to get the refinement results stated in the body of the paper.

B Appendix – Case Studies

B.1 Session-Typed Language Translation

In this appendix we develop the logical relation used for our compiler correctness
proof. The body of the paper has already explained the meaning of session-types.
But it avoided the crucial issue of showing that this relation is well-defined. What
actually happens is we develop a state transition system for sessions which is
parameterized by an interpretation of types. As we’ll see, we then take a fixed
point which is defined using this construction.

In our actual proof though, we do not work with the Hoare triple versions of
our rules. Instead, we work with a more primitive form called weakest precon-
dition, since it is much easier to work with in a proof assistant. We first sketch
the connection between these and Hoare triples.

Then, we give this parameterized STS construction and state the mechanized
weakest precondition proof rules using this STS for the message passing prim-
itives. This time around we will be more explicit about the delay constants at
first, but then show why it is OK to hide them. Next, we describe some ad-
ditional Iris features we’ll need and use them to define the logical relation (in
particular, the . modality we mentioned without explanation in the main text).
We then prove that our logical relation is sound (that is, it implies refinement
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for closed terms). Finally, we prove the fundamental lemma, which shows that
the logical relation holds between well-typed expressions and their translation.
This completes the proof.

Weakest Precondition In Iris, Hoare triples are not a primitive form. Instead,
they are defined in terms of a weakest pre-condition primitive as follows:

{P } e {x.Q} , A(�(P —∗ wp e {x.Q}))

The assertion wp e {x.Q} expresses ownership of resources that is strong enough
to justify the safe execution of e, such that when e terminates, Q holds. This is
an ephemeral assertion in the sense that, like e.g. l ↪→ v, it can be used at most
once and is the invalidated.

The magic wand P —∗ wp e {x.Q} says that if we are given resources satisfy-
ing P , we have enough resources to satisfy the weakest pre-condition. The wand
—∗ works like an implication, but is right adjoint to the separating conjunction
∗ instead of plain conjunction ∧.

Notice that in the example in §3, when we summarized the current state of
the proof, we often said things like “Our current resources are P and we have to
verify the following code e (with post-condition Q)”. This exactly corresponds
to a proof-state where our current logical context is P , and the goal is wp e {Q}:

P ` wp e {Q}

It should not be surprising that in carrying out Iris proofs in Coq, we gener-
ally work with weakest pre-conditions.

Next, we wrap the always modality � around the wand. This is to enforce
that proofs of Hoare triples be persistent, i.e., the modality makes sure that
a Hoare triple, once established, will remain valid throughout the remaining
verification. By default, assertions in Iris are ephemeral and hence can be used
only once.

Finally, there is an affine modality wrapping the whole thing – there should
be no other source hidden within such a Hoare triple. We only get to use ones
in P .

The Session STS The states, tokens, and transitions we gave in the main text
did not mention the logical relation, so there is no concern about circularity in
their definition. The only problem was the definition of the state interpretation,
which was given as:

ϕS,c(nl, nr, ll, lr) , ∃Lc, Lh.(
c ↪→s (Lc, []) ∗ linklist(Lh, ll, lr) ∗

(Lh 'L Lc : Snl) ∗ nl + |Lc| = nr

)
∨ ...
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This implicitly relied on the definition of the logical relation via the lifting
of the relation to lists of values:

[] 'L [] : S

.(v 'V V : τ) ∗ Lh 'L Lc : S

vLh 'L V Lc : ?τ. S

What we now do is have the lifting of lists take a parameter, Θ, which is a
pre-existing interpretation of types (i.e., a map from types to a relation between
values of the target and source):

[] 'LΘ [] : S
Θ(τ)(v, V ) ∗ Lh 'LΘ Lc : S

vLh 'LΘ V Lc : ?τ. S

Then, ϕ will also take this parameter and pass it to the list relation:

ϕΘ,S,c(nl, nr, ll, lr) , ∃Lc, Lh.(
c ↪→s (Lc, []) ∗ ∗linklist(Lh, ll, lr) ∗

Lh 'LΘ Lc : Snl ∗ nl + |Lc| = nr

)
∨ ...

We write ↑ (nl,−, l,−) for the set of all states that have first component nl
and third component l, and symmetrically for the right counts and heap pointer.

Finally, we can define an assertion SessionΘ(l, cs, S) which asserts (1) exis-
tence of an STS governing l and c, (2) comes equpped with the tokens needed
for manipulating the end-point indicated by s, and (3) ensures that the current
type of the end-point for s has type S:

SessionΘ(l, cs, S) ,

(s = left⇒ ∃S0, nl, γ, StsCtx
γ(S, ϕΘ,S,c(−))

∗ StsStγ(↑ (nl,−, l,−), {[Left n] | n > nl) ∗ Sn0 = S)

∨ (s = right⇒ ∃S0, nr, γ, StsCtx
γ(S, ϕΘ,S,c(−))

∗ StsStγ(↑ (−, nr,−, l), {[Right n] | n > nl) ∗ Sn0 = S
)

Of course, we’ve now only deferred the problem – eventually we do need to
plug in the desired logical relation for Θ. For now, the key is that we can still
prove things about channels which use this invariant; its just that the proof rules
are also parameterized by Θ.

To show these rules, we need to be a bit more precise about delay constants
for a moment. The triple about the receive primitive mentioned in the body
of the paper omitted delay constants, and in general we have not been explicit
about such constants in the main text. Let us first be a bit more precise about
this, so that we can justify why it is safe to ignore them subsequently.
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As we said when explaing the source assertion when we do a proof we need to
fix a number D that will be an upper bound throughout for all delay constants.
In the Coq development, we somewhat profligately proved things involving the
above STS assuming that this upper bound was at least ≥ 100. So for concrete-
ness, let us just fix this D now to be 100. Then we have proved the following
rules (written in the weakest precondition style instead of Hoare triples):

1 < d ≤ D d′ ≤ D
source(i,K[newch], d) ` wp heapNewch { (l, l).∃c. source(i,K[(cleft, cright)], d

′)

∗ SessionΘ(l, cleft, S) ∗ SessionΘ(l, cright, S)}
1 < d ≤ D − 2 d′ ≤ D − 2 ∀v, V.Θ(τ)(v, V ) ` .P (v, V )

source(i,K[recv(cs)], d) ∗ SessionΘ(l, cs, ?τ. S) `
wp heapRecv l {(l′, v).∃V. source(i,K[(cs, V )], d′) ∗ P (v, V ) ∗ SessionΘ(l, cs, S)}

4 < d ≤ D d′ ≤ D − 1

source(i,K[send(cs, V )], d) ∗Θ(τ)(v, V ) ∗ SessionΘ(l, cs, !τ. S) `
wp heapSend l v {l′. source(i,K[cs], d

′) ∗ SessionΘ(l′, cs, S)}

In addition, to the explicit delays, we also have this business about .P in the
second rule, which we can ignore for now. Note that if 4 < k ≤ D − 2, then k
satisfies all of the side conditions placed on the delay constants that we start with
in each rule (i.e., d). Moreover, such a d satisfies all of the constraints placed on
the ending delay constant (i.e., d′). That means if we start with such a k, at the
end we can continue with the same k. In particular, a choice of k = 50 works.
It’s also the case that 0 satisfies the conditions on the d′ above; so whatever
delay we start with, we can always end up with 0, if we wish.

Putting this together, we will define source(i, E) (that is, without the delay
constant) as:

source(i, E) , source(i, E, 50) source(i, V ) , source(i, V, 0)

That is, when we are working with an expression, we assume an implicit
delay constant of 50; when the source thread is a value, it is 0’d out. Rewriting
the rules above with this new form, we can ignore the delay constants:
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source(i,K[newch]) ` wp heapNewch { (l, l).∃c. source(i,K[(cleft, cright)])

∗ SessionΘ(l, cleft, S) ∗ SessionΘ(l, cright, S)}
∀v, V.Θ(τ)(v, V ) ` .P (v, V )

source(i,K[recv(cs)]) ∗ SessionΘ(l, cs, ?τ. S) `
wp heapRecv l {(l′, v).∃V. source(i,K[(cs, V )]) ∗ P (v, V ) ∗ SessionΘ(l, cs, S)}

source(i,K[send(cs, V )]) ∗Θ(τ)(v, V ) ∗ SessionΘ(l, cs, !τ. S) `
wp heapSend l v {l′. source(i,K[cs]) ∗ SessionΘ(l′, cs, S)}

To see that these implicit rules follow from the explicit delay constant form,
observe that if (1) K[E] is a value, E must in fact be a value, and (2) if K[V ] is a
value, then for all V ′, K[V ′] is a value. This means for each of the above rules, we
first determine whether the evaluation K will be a value after we substitute the
return values in the post-condition; if it is, we apply the corresponding original
rule taking d′ = 0. If not, we take d′ = 50.

The reason we chose the “implicit” delay for values to be 0 is so that
source(i, V ) ` Stopped, and so that our refinement rule can also be written
as:

{source(i, E)} e {x.∃V. source(i, V ) ∗ x ≈ V }
e v E

Logical Relation Now that we have the STS defined in this parameterized way,
we can follow up by defining the logical relation in a non-circular way. We follow
the standard set-up of defining an interpretation of types that relates values,
then lifting this to a relation on closed expressions, and then using that to define
a relation on open expressions. In general, given a function Θ which maps types
to Iris relations on values of the target and source, we write v 'VΘ V : τ to say
that v and V are related at the interpretation of τ under Θ.

Lifting relations on values to expressions. The expression lifting operation is
generic with respect to the final interpretation on values, so let us first define
that. Given Θ, we define its lifting between expressions of the target and source
as:

e 'EΘ E : τ , ∀i,K.A(source(i,K[E]) —∗ wp e {v.∃V.A(v 'VΘ V : τ) ∗ source(i,K[V ])})

This is an assertion saying that for any choice of thread i and evaluation con-
text K, if we are given source(i,K[E]) we can prove a weakest-precondition for e
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in which the executions end in related values according to Θ at the appropriate
type. We wrap this wand in an affine modality to ensure there are no implicit
other threads owned. Also, in the post-condition, the proof that the values are
related must be affine for a similar reason.

Let us note that the standard way such lifting relations are defined (in for
instance, the sequential case) is more or less to say that e and E are related
if they evaluate to related values. Indeed, that’s essentially what we are saying
here, but using the weakest precondition and all of the other machinery we
have built up so that we’re implicitly talking about concurrent executions and
fairness.

Note that so long as v 'VΘ V : τ is affine, v 'VΘ V : τ ` v 'EΘ V : τ

Logical relation on values. Iris has two important features which we did not
explain in the main text. First, there is the modality .P (called “later”), which
we have asked the reader to ignore a few times. This describes resources which
satisfy P at one lower step-index. So, P ` .P , but not conversely. Second, we can
construct fixed-points of arbitrary recursive definition of a predicate, so long as
all recursive occurences are under the “later” modality. Such recursive definitions
are called “guarded”.

We will define our interpretation of types by taking a fixed point of a guarded
recursive definition. First, we define the function F which we are going to take
the fixed-point of. Given an interpretation of types, Θ (that is, a map from types
to an Iris relation on values), we define F (Θ) as yet another interpretation of
types, defined by structural induction on types:

n 'VF (Θ) n : Int () 'VF (Θ) () : Unit

(v1 'VF (Θ) V1 : τ1) ∗ (v2 'VF (Θ) V2 : τ2)

(v1, v2) 'VF (Θ) (V1, V2) : τ1 ⊗ τ2

∀v′, V ′.A(v′ 'VF (Θ) V
′ : τ ′ —∗ (λx. e) v′ 'EF (Θ) (λx.E)V ′ : τ)

λx. e 'VF (Θ) λx.E : τ ′( τ

Session.Θ(l, cs, S)

l 'VF (Θ) cs : S

The first three rules are straight-forward. The third says that two values are
related at τ ′( τ , if, when we apply them to values related at the intepretation
of τ ′, the applications are related at τ . Since the applications are expressions
and not values, we use the lifting of the type interpretation.14 By .Θ we mean
the type interpretation which applies a later after applying Θ to its arguments.
Note that each occurence of F (Θ) in a premise is at a smaller type, so F (Θ)

14 A lifting of an interpretation of types is defined as the point-wise lifting at each type.
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is well-defined. Second, the only occurence of Θ is in the rule for session types,
where it occurs guarded by a later modality. Thus, the fixed point of F exists –
call it Ω. Then, our logical relation at values is this − 'VΩ − : τ (which in the
text we wrote without Ω annotation)

The fact that Ω is a fixed point of F means that

v 'VΩ V : τ a` v 'VF (Ω) V : τ

Note that v 'VΩ V : τ is affine for all v, V , and τ , and so is the lifting of Ω
to expressions.

Now we can explain the additional premise in the rule for receive. By default
when we have l 'VΩ cs : ?τ. S, this would unfold to Session.Ω(l, cs, recv(τ)S)
– looking at the definition of state interpretation, we might be afraid that the
returned message values v and V , might merely be related at . of Ω (τ) in the
postcondition, not at Ω (τ). The key is that the premise above the line lets us
“strip” off such a later: take P in that premise to be − 'VΩ − : τ . Then, the
premise of the rule holds when Θ is . Ω, because .(v 'VΩ V : τ) ` .(v 'VΩ V : τ),
and so in the post condition we get out v 'VΩ V : τ without the later. This
justifies the rule we presented in the paper (and which we use below in the proof
of the fundamental lemma).

We now lift this relation to one on open expressions in a given context.
Given a map γh from a finite domain of variables to closed expressions in the
target language, we write [γh]e for the result of simultaneously substituting each
variable in the domain of γh for its image under γh. [γc]E is the analogous thing
for source expressions.

We define the relation Γ ` e ' E : τ , where Γ is a typing context, by:

Γ ` e ' E : τ , ∀γh, γc. (dom(γh) = dom(γc) = Γ ∧ fv(E) = fv(e) ⊆ dom(Γ ))→(
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` [γh]e 'EΩ [γc]E : τ

where we take∗ over an empty set to be A(True). We now show that the
logical relation is sound :

Lemma 41. If ∅ ` e ' E : τ , then e v E.

Proof. By induction on τ :

– τ = Int: By assumption, we have that Emp ` e 'EΩ E : Int.
By the refinement rule, it suffices to prove:

Emp ` {source(i, E)} e {x. ∃V. source(i, V ) ∗ x ≈ V }

Since Emp is affine and persistent, we can clear the implicit modalities in the
Hoare triple, and move the pre-condition to the context by using the wand
intro rule, so that we need to show:
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source(i, E) ` wp e {x. ∃V. source(i, V ) ∗ x ≈ V }

By our assumption, we can rewrite this as:

source(i, E) ∗ e 'EΩ E : Int ` wp e {x.∃V. source(i, V ) ∗ x ≈ V }

Unfolding the definition of the lifting of Ω, instantiating it with i and [],
clearing the afine modality, and then eliminating the resulting wand with
source(i, e), we need

wp e {x. ∃V. source(i, V ) ∗ ∃n. x = V = n} ` wp e {x. ∃V. source(i, V ) ∗ x ≈ V }

By the rule of consequence of weakest precondition (i.e., , weakest precon-
dition is covariant in the post condition), it suffices to show for aribtrary
x,

∃V. source(i, V ) ∗ ∃n. x = V = n ` ∃V. source(i, V ) ∗ x ≈ V

Which follows from the definition of ≈.

The other cases are the same: in each case, we take the assumption, apply
the refinement proof rule; then the ownership we get in the pre-condition of the
refinement triple is the antecedent of the wand in the definition of the lifting of
the type relation to expressions; eliminating that gives a weakest precondition,
where the post condition implies that values are logically related; our logical
relation implies ≈, so we’re done.

We now prove what is called the fundamental theorem:

Lemma 42. If Γ ` E : τ then Γ ` Ê ' E : τ

Proof. The proof is by induction on the derivation of Γ ` E : τ .

– Case Var: x̂ = x, so given closing subsitutions γh and γc, we need to show(
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` [γh]x 'EΩ [γc]x : τ

Then [γh]x = γh(x) and similarly for γc, so this becomes(
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` γh(x) 'EΩ γc(x) : τ

Note that Γ (x) = τ , so, manipulating∗, this just becomes

γh(x) 'EΩ γc(x) : τ ∗

(
∗

x∈Γ\{x}
γh(x) 'EΩ γc(x) : Γ (x)

)
` γh(x) 'EΩ γc(x) : τ
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Since the interpretation is affine, we can throw away

(
∗

x∈Γ\{x}
γh(x) 'EΩ γc(x) : Γ (x)

)
,

and we are done.
– Case Int: Again, n̂ = n, and these are closed, so we just have to show, given

substitutions: (
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` n 'EΩ n : τ

We can throw away the context, since it is affine and not needed. Then,
our goal follows immediately from the fact that n 'VΩ n : Int, and we have
already said that related values are related under the lifting, since Ω is affine.

– Case Fun-Intro: Once more, ̂(λx.E) = λx. Ê. By our induction hypothesis,

we have that Γ, x : τ1 ` Ê ' E : τ2. Given γh and γc, we know [γc]λx.E =

λx. [γc]E and [γh]λx. Ê = λx. [γh]Ê. We can push the substitutions under
the binders because x is explicitly not in Γ hence not in the domain of
the substitutions, and capture is not possible because they are substituting
closed expressions. Then it suffices to show(
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` λx. [γh]Ê 'VΩ λx. [γc]E : τ1 ( τ2

Unfolding the definition on the right, we are given arbitrary v′, V ′ which
are related at τ1, which we put in the context using the rule for for all
introduction, affine introduction, and wand introduction; we then need to
show:

v′ 'VΩ V ′ : τ1 ∗

(
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` (λx. [γh]Ê) v′ 'EΩ (λx. [γc]E) V ′ : τ1 ( τ2

After yet more unfolding, we need to show

source(i,K[(λx. [γc]E) V ′]) ∗ v′ 'VΩ V ′ : τ1 ∗

(
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` wp (λx. [γh]Ê) v′ {v′′.∃V ′′. source(i,K[V ′′]) ∗ v′′ 'VΩ V ′′ : τ2}

We step the source and target to do the beta reductions:

source(i,K[[V ′/x][γc]E]]) ∗ v′ 'VΩ V ′ : τ1 ∗

(
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` wp [V ′/x][γh]Ê {v′′.∃V ′′. source(i,K[V ′′]) ∗ v′′ 'VΩ V ′′ : τ2}
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We can then extend the substititons γh and γc to also map x to v′ and V ′

respectively; call these γ′h and γ′c. Then, rewriting the above and regrouping
our assertions to the left of the turnstile, we get:

source(i,K[[γ′c]E]) ∗

(
∗

y∈Γ,x:τ1

γ′h(y) 'EΩ γ′c(y) : Γ (y)

)
` wp [γ′h]Ê {v′′.∃V ′′. source(i,K[V ′′]) ∗ v′′ 'VΩ V ′′ : τ2}

But now we can apply our induction hypothesis (suitably unrolling and in-
stantiating everything).

– Case Fun-Elim: Our induction hypothesis says: Γ ` Ê ' E : τ1 ( τ2 and

Γ ` Ê′ ' E′ : τ1 and we need to show, given closing substitutions γh and
γc:

(
∗

x∈Γ]Γ ′
γh(x) 'EΩ γc(x) : (Γ ] Γ ′)(x)

)
` [γh]Ê [γh]Ê′ 'EΩ [γc]E [γc]E

′ : τ2

But we note now that E and E′ (and their translations) must only have free
variables within Γ and Γ ′ respectively. Let χh and χ′h be the restrictions of
γh to Γ and Γ ′ respectively; similarly for χc and χ′c. Then [γc]E = [χc]E

and [γh]Ê = [χc]Ê and similarly for the primed versions. Then substituting,

and splitting our∗, the above becomes:

(
∗
x∈Γ

χh(x) 'EΩ χc(x) : Γ (x)

)
∗

(
∗
x∈Γ ′

χ′h(x) 'EΩ χ′c(x) : Γ ′(x)

)
` [χh]Ê [χh]Ê′ 'EΩ [χc]E [χc]E

′ : τ2

Unfolding this becomes:

source(i,K[[χc]E [χ′c]E
′]) ∗

(
∗
x∈Γ

χh(x) 'EΩ χc(x) : Γ (x)

)
∗

(
∗
x∈Γ ′

χ′h(x) 'EΩ χ′c(x) : Γ ′(x)

)
` wp [χh]Ê [χ′h]Ê′ {v′′.∃V ′′. source(i,K[V ′′]) ∗ v′′ 'VΩ V ′′ : τ2}

Using the bind rule to focus on the left expression of each computation, we
use the induction hypothesis for E to get that there exists v, V , for which
it suffices to show that:

source(i,K[V [χ′c]E
′]) ∗ v 'VΩ V : τ1 ( τ2 ∗

(
∗
x∈Γ ′

χ′h(x) 'EΩ χ′c(x) : Γ ′(x)

)
` wp v [χ′h]Ê′ {v′′.∃V ′′. source(i,K[V ′′]) ∗ v′′ 'VΩ V ′′ : τ2}
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Doing the same thing for the other induction hypothesis we get that there
exists v′, V ′ for which we need to show that:

source(i,K[V V ′) ∗ v 'VΩ V : τ1 ( τ2 ∗ v′ 'VΩ V ′ : τ1

` wp v v′ {v′′.∃V ′′. source(i,K[V ′′]) ∗ v′′ 'VΩ V ′′ : τ2}

But this follows from the definition of v 'VΩ V : τ1 ( τ2.

– Case Pair-Intro: We have Γ1 ` Ê1 ' E1 : τ1 and Γ2 ` Ê2 ' E2 : τ2, and
must show, given γh and γc that:

(
∗

x∈Γ1]Γ2

γh(x) 'EΩ γc(x) : (Γ1 ] Γ2)(x)

)
` ([γh]Ê1 [γh]Ê2) 'EΩ ([γc]E1, [γc]E2) : τ1 ⊗ τ2

As in the previous case, we can restrict the substitions to Γ1 and Γ2; for γh,
call those χh and χ′h respectively and similarly for γc, and since Ei has free
variables only appearing in Γi, we can rewrite the above to be:

(
∗
x∈Γ1

χh(x) 'EΩ χc(x) : Γ1(x)

)
∗

(
∗
x∈Γ2

χ′h(x) 'EΩ χ′c(x) : Γ2(x)

)
` ([χh]Ê1, [χ

′
h]Ê2) 'EΩ ([χc]E1, [χ

′
c]E2) : τ1 ⊗ τ2

Now, we unfold the lifting on the right and introduce the corresponding
source ownership assertion:

source(i,K[([χc]E1, [χ
′
c]E2)]) ∗

(
∗
x∈Γ1

χh(x) 'EΩ χc(x) : Γ1(x)

)
∗

(
∗
x∈Γ2

χ′h(x) 'EΩ χ′c(x) : Γ2(x)

)
` wp ([χh]Ê1, [χ

′
h]Ê2) {(v1, v2).∃V1, V2. source(i,K[(V1, V2)]) ∗ (v1, v2) 'VΩ (V1, V2) : τ1 ⊗ τ2}

As in the previous case, we use the bind rule to focus on the left and then
right subexpressions; applying our induction hypothesis about E1 and E2

then lets us trade our context assumptions to end up with some v1, V1, v2, V2

for which it suffices to show:

source(i,K[(V1, V2)]) ∗ v1 'VΩ V1 : τ1 ∗ v2 'VΩ V2 : τ2

` source(i,K[(V1, V2)]) ∗ (v1, v2) 'VΩ (V1, V2) : τ1 ⊗ τ2

But this follows immediately from the unfolding of Ω at pair type.

– Case Pair-Elim: The argument is similar to Fun-Intro, in the way that Pair-

Intro corresponds to Fun-Elim, so we omit it.
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– Case Fork: Surprisingly, this too is similar to the cases for pair and function!
The reader might have expected that this would in fact be a hard case; but it
is not precisely because our lifting from value relation to expression relation
is usiing the weakest precondition, so we’ll be able to use the fork rule. To wit,
we have by induction hypothesis that Γ1 ` Êf ' Ef : τ ′ and Γ2 ` Ê ' E : τ .
We must show:

(
∗

x∈Γ1]Γ2

γh(x) 'EΩ γc(x) : (Γ1 ] Γ2)(x)

)
` fork{[γh]Êf}; [̂γh]E 'EΩ fork{[γc]Ef}; [γc]E : τ

Doing the same routine of restricting the substitutions, splitting the context
assumptions, unfolding the lifting relation, etc. we get that we need to show

source(i,K[fork{[χc]Ef}; [χ′c]E]) ∗

(
∗
x∈Γ1

χh(x) 'EΩ χc(x) : Γ1(x)

)
∗

(
∗
x∈Γ2

χ′h(x) 'EΩ χ′c(x) : Γ2(x)

)
` wp (fork{[χh]Êf}; [χ′h]Ê) {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : τ}

We start by applying the fork rule; we then do a step-shift in the source to get
source(j, [χc]Ef ) for some new j, and the parent thread becomes source(i, E).
We now split the context, passing the assumptions about Γ1 the j source
thread to a proof of weakest precondition for the child target thread; the rest
is used in the target parent thread’s proof. So we need to prove the following
two entailments:

source(j, [χc]Ef) ∗

(
∗
x∈Γ1

χh(x) 'EΩ χc(x) : Γ1(x)

)
` wp [χh]Êf {v.Stopped}

source(i,K[[χ′c]E])

(
∗
x∈Γ2

χ′h(x) 'EΩ χ′c(x) : Γ2(x)

)
` wp [χ′h]Ê {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : τ}

The latter follows from the induction hypothesis. For the former, using the
induction hypothesis and the rule of consequence for weakest precondition
means we just need to show, for all v, V :

source(j, V ) ∗ v 'VΩ V : τ ′ ` Stopped

But the right side of the conjunction is affine, hence can be thrown away,
and we have mentioned above that a source of a value entails Stopped.
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– Case NewChTyp: At last we come to a case involving a channel. This ex-
pression is closed, it suffices to show:

source(i,K[newch]) ∗

(
∗
x∈Γ

χh(x) 'EΩ χc(x) : Γ1(x)

)
` wp heapNewch {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : S ⊗ S}

Throwing away the Γ piece of the context and rewriting our proof rule for
newch on the remaining source(i,K[newch]) yields:

wp heapNewch {(l, l).∃c. source(i,K[(cleft, cright)]) ∗ Session.Ω(l, cleft, S) ∗ Session.Ω(l, cright, S)}
` wp heapNewch {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : S ⊗ S}

Applying the rule of consequence, we merely need to show, for all l and c:

source(i,K[(cleft, cleft)]) ∗ Session.Ω(l, cleft, S) ∗ Session.Ω(l, cright, S)

` source(i,K[(cleft, cright)]) ∗ (l, l) 'VΩ (cleft, cright) : S ⊗ S

Unfolding the definition of value relation at pair type and session type, the
left side matches the right side so we are done.

– Case Send: Our induction hypothesis gives us that Γ ` Ê1 ' E1 : !τ. S and

Γ ` Ê2 ' E2 : τ and we need to show, given closing substitutions γh and γc:

(
∗

x∈Γ1]Γ2

γh(x) 'EΩ γc(x) : (Γ1 ] Γ2)(x)

)
` heapSend [γh]Ê1 [γh]Ê2 'EΩ send([γc]E1, [γc]E2) : S

Doing the usual routine of noting that the two subexpressions only have
free variables in their respective contexts, taking restrictions, and unfolding
everything:

source(i,K[send([χc]E1, [χ
′
c]E2)]) ∗

(
∗
x∈Γ1

χh(x) 'EΩ χc(x) : Γ1(x)

)
∗

(
∗
x∈Γ2

χ′h(x) 'EΩ χ′c(x) : Γ2(x)

)
` wp heapSend [χh]Ê1 [γh]Ê2 {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : S}

Notice that because the implementation of heapSend let-binds a pair contain-
ing the two “arguments”, they are both evaluated first before substitution
into the “body” of the send primitive. Hence, we first evaluate the left and
then right subexpressions using our induction hypothesis, and then just have
to show for all values v1, v2, V1, V2:

source(i,K[send(V1, V2)]) ∗ v1 'VΩ V1 : !τ. S ∗ v2 'EΩ V2 : τ

` wp heapSend v1 v2 {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : S}
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But then, the relation of v1 and V1 unfolds to give us:

source(i,K[send(V1, V2)]) ∗ Session.Ω(v1, V1, !τ. S) ∗ v2 'EΩ V2 : τ

` wp heapSend v1 v2 {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : S}

So we can use the proof rule for send primitive on the left to get

wp heapSend v1v2 {l′. source(i,K[cs]) ∗ Session.Ω(v1, V1, S)}
` wp heapSend v1 v2 {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : S}

Applying the rule of consequence, and unfolding the interpretation at session
type, we are done.

– Case Recv: Our induction hypothesis gives us that Γ ` Ê ' E : ?τ. S and
we need to show, given closing substitutions γh and γc:(
∗
x∈Γ

γh(x) 'EΩ γc(x) : (Γ )(x)

)
` heapRecv [γh]Ê 'EΩ recv([γc]E) : τ ⊗ S

Unfolding we have:

source(i,K[recv([γc]E)]) ∗

(
∗
x∈Γ

γh(x) 'EΩ γc(x) : Γ (x)

)
` wp heapRecv [γh]Ê {v.∃V. source(i,K[V ]) ∗ v 'VΩ V : τ ⊗ S}

We first evaluate the subexpression using our induction hypothesis, and then
just to show for all values v, v:

source(i,K[recv(V )]) ∗ v 'VΩ V : ?τ. S

` wp heapRecv v {v′.∃V ′. source(i,K[V ]) ∗ v 'VΩ V : τ ⊗ S}

Again, the relation of v and V unfolds to give us:

source(i,K[recv(V )]) ∗ Session.Ω(v, V, ?τ. S)

` wp heapRecv v {v′.∃V ′. source(i,K[V ]) ∗ v 'VΩ V : τ ⊗ S}

So we can use the proof rule for receive primitive on the left to get

wp heapRecv v {(l′, v′).∃V ′. source(i,K[(cs, V
′)]) ∗ (v′ 'VΘ V ′ : τ) ∗ Session.Ω(l′, V ′, S)}

wp heapRecv v {v′.∃V ′. source(i,K[V ′]) ∗ v′ 'VΩ V ′ : τ ⊗ S}

Applying the rule of consequence, and unfolding the interpretation at tensor
and session type, we are done.

This completes the proof of the fundamental lemma. Then, Theorem 1 follows
by combining the fundamental lemma and the soundness of the logical relation
(Lemma 41): every well typed term is logically related to its translation, and the
left side of a logically related pair refines the right side.
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B.2 Craig-Landin-Hagersten Lock

CLHnew ,

λ . let d = ref False in

(ref d, ref d)

ticketnew ,

λ . (ref 0, ref 0)

CLHwait , rec loop me prev lk

let w = !prev in

if w then

loop me prev lk

else

(fst lk) := me

ticketwait , rec loop x lk

let o = !(fst prev) in

if x = o then

()

else

loop x lk

CLHacq , λlk.

let me = ref True in

let prev = swap(snd lk,me) in

CLHwait me prev lk

ticketacq , λlk.

let n = FAI(snd lk) in

ticketwait n lk

CLHrel , λlk.

!(fst lk) := False

ticketrel , λlk.

(fst lk) := !(fst lk) + 1

Fig. 5. Code for CLH and ticket locks.

In this part, we describe our second case study, which shows that the Craig-
Landin-Hagersten queue lock[11, 30] refines a fair ticket lock [31]. Like the first
case study, the results mentioned here have all been mechanized in Coq. Our
goal here is simply to give a feel for what the result is about; we do not describe
the actual proofs or the state transition systems we use. The interested reader
should consult the Coq source.

Lock Implementations The code for the two types of locks appears in Fig-
ure 5. The FAI(−) operation is a fetch-and-increment: it takes a location as
a parameter and atomically increments that location and returns the previous
value. Meanwhile, swap(−,−) takes a location and a value and atomically loads
the previous value of the location and stores the second parameter as the new
value.

Each ticket lock consists of two references storing integers: the “owner”
counter and the “next” counter, called o and n in the code, so ticketnew just
allocates these two references. To acquire the lock, a thread atomically fetches
and increments the next counter to get a number, which we call a “ticket”
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(ticketacq). It then spins on the owner counter waiting until the owner counter
matches the thread’s ticket number (ticketwait). Once it matches, the thread
enters the critical section. To release the lock, the thread increments the owner
counter (ticketrel).

The lock is fair in the sense that once a thread calls ticketacq and completes
its fetch-and-increment operation to get its ticket, it is guaranteed to enter the
critical section before other threads that subsequently call ticketacq. Thus, if
every thread which acquires the lock eventually releases it, every thread that
tries to acquire the lock will eventually enter the critical section.

However, one drawback to this design is that every thread waiting to acquire
the lock spins on the same owner counter location. Depending on the machine,
this can cause poor performance for memory related reasons [31]. In contrast, in
the CLH lock, every waiting thread spins on a different memory location. The
rather extensive benchmarking done by David et al. [13] suggests that in some
settings the CLH lock performs better than the ticket lock.

Conceptually, we can think of the CLH lock as consisting of a queue of
threads, in the order that they tried to acquire the lock. The lock has two fields:
a pointer to the head of the queue, and a pointer to the tail of the queue. Each
node in the queue consists of a single boolean value. While this value is true, the
node that owns that node is either (1) still waiting to enter the critical section,
or (2) is in the critical section, but has not yet released the lock. When creating a
new CLH lock, we create a dummy node in which this field is set to false, and set
the head and tail to point to it (CLHnew). To acquire the lock, a thread allocates
a new node and inserts itself at the back of the list by atomically swapping the
location of the new node with the current tail (CLHacq) – the value returned by
this atomic swap is the node of its predecessor in the list. The thread then spins
on this node’s boolean value until it is false – this indicates that the predecessor
has released the lock, signalling that the thread is now at the head of the queue
and may enter the critical section (CLHwait). Before entering the critical section,
the thread therefore updates the head pointer to point to its node. To release
the lock, the thread looks at the node pointed to by the head field, and sets that
node to false (CLHrel).

Observe that, as claimed, each waiting thread spins on a different location:
the node of its predecessor in the list.

There is one important difference between our implementation and typical
versions. Usually, there is no head pointer, and the API is designed so that the
acquire method take two parameters: (1) the lock, and (2) the new node to be
added to the list, while the release method takes only the releaser’s node. This
means conventionally it is not a drop-in replacement for the ticket-lock, because
in the ticket lock, both acquire/release take the lock structure as their only
parameter. That said, the head pointer may have other uses and is included in
some implementations [25].

Refinement Specification Note that the CLH lock is fair in the same sense as
the ticket lock: once a thread completes its atomic swap to insert itself into the
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queue, it must enter the critical section before threads that later call CLHacq.
This is what makes it possible to establish a fair termination preserving refine-
ment.

However, let us note that if we take a closed program e and replace all
instances of the ticket lock primitives with CLH primitives to get a program
e∗, it is not necessarily the case that e∗ refines e. First, one can violate the
“abstraction” of the lock datatype, like so:

let l = (ref 0, ref 0) in

ticketacq l

This program does not trigger a fault, because l happens to represent a valid
ticket lock, but if we replace ticketacq with CLHacq it gets stuck. Of course, we
could use a type system in which the lock primitives manipulate values of some
abstract type “lock”, and this would rule out such examples. Then we might hope
to prove that the refinement holds when the original program is well-typed.

However, this is not true. Consider the following example:

let l = ticketnew () in

ticketrel l

ticketacq l

This program diverges, because the first call to ticketrel will increment the owner
counter to 1, but during the call to ticketacq, the ticket the thread gets will
be number 0, so it will loop forever waiting for the owner counter to be 0. In
contrast, if we use CLHnew, CLHrel, and CLHacq in the above program, the result
terminates! The call to CLHrel will set the dummy node’s boolean to False, but
it was already False, so this does nothing. Thus, the thread will see the dummy
node is False during the call to CLHacq and will not spin. Thus, the CLH version
is not a termination-preserving refinement of the source.

Of course, this example uses the lock “incorrectly” because it releases the
lock before acquiring it. What’s important is that as long as the lock is used
“correctly” the refinement should hold. This is captured by the following set of
rules that we prove about the CLH primitives:
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5 < d ≤ D d′ ≤ D

source(i,K[ticketnew ()], d) ∗ A(R) `
wp CLHnew () {lk.∃lks, γ. isLock(γ, lks, lk, R) ∗ source(i,K[lks], d′)}

5 < d ≤ D d′ ≤ D − 2

source(i,K[ticketacq lks], d) ∗ isLock(γ, lks, lk, R) `
wp CLHacq () {v.v = () ∗ locked(γ, lks, lk) ∗ source(i,K[()], d′) ∗ A(R)}

5 < d ≤ D d′ ≤ D − 2

source(i,K[ticketrel lks], d) ∗ isLock(γ, lks, lk, R) ∗ locked(γ, lks, lk) ∗ A(R) `
wp CLHrel lk {v.v = () ∗ source(i,K[()], d′)}

where isLock(−,−,−,−) and locked(−,−,−) are certain predicates defined in
the logic. If one ignores all the parts of the above specification that have to
do with our extensions (delay constants, refinement resources, and the affine
modality), this looks like a standard specification for a lock primitive in a higher
order concurrent separation logic (indeed, this kind of specification is proved
about the ticket lock in the original Iris repository). Such a specification says
that for an arbitrary assertion R, if one initially owns R, it can be given up to
create a lock protecting R – in exchange, one gets an assertion isLock(−,−,−,−)
which is duplicable. Then, a thread can use this assertion to call acquire, and
afterward it back R, and an assertion locked(−,−,−) which signifies that it
is the owner of the lock. Both R and locked(−,−,−) are needed to then call
release. Thus this typical formulation of a lock specification rules out the kind
of counter-examples we illustrated above. Re-reading the specification with the
parts relevant to our extension, we see that each shows a refinement from the
corresponding ticket lock primitive.

Of course, one can use these rules, along with the rest of the logic, to prove
that for a given program, if one replaces the ticket primitives with the CLH
versions, the result is a refinement. If the reader is familiar with the “usual”
specification of lock primitives in higher order CSL, hopefully the above descrip-
tion is compelling evidence that this refinement specification is “good enough”.
In the next section, we describe a particular use of these proof rules to show that
for a large class of well-typed programs, the desired refinement holds.

Type-directed translation We now describe a simple type-directed transla-
tion from programs using the ticket primitives to ones using the CLH primitives.
We then construct a logical relation which uses the weakest precondition specifi-
cation described above to show that the translated programs refine their sources.

The translation is shown in Figure 6. We write Γ ` e  e′ : τ to indi-
cate that in context Γ , the expression e translates to e′ at type τ . The type
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system used in the translation is a standard simple type system for MiniML
with references, extended with an abstract type Lock for locks. In contrast to
the session-typed language, the type system here is fully structral, not affine.
The primitive ticketnew translates to CLHnew and returns a value of type Lock
(Lock-Intro). This lock can be used with the command ticketsync, which takes
a ticket lock and a function of type Unit→ τ and synchronizes execution of the
function with the lock (Lock-Elim). This translates to CLHsync, which does the
same thing but using the CLH lock implementation.

Because these “synchronize” commands properly acquire and then release
the lock, a the type system rules out the kinds of bad programs we mentioned
above. Of course, this is a very restricted way of using the lock. Our point is just
to show that the weakest precondition specification supports this kind of use;
it in fact is more flexible, but a type system that demonstrated this would be
more complex (at which point, one might want to just appeal to the program
logic directly to prove the refinement).

As usual, to state our refinement result, we need to give a notion of observa-
tional equivalence on values. Here, we restrict our attention to booleans and say
that given two booleans b and b′, b ≈ b′ if and only if b = b′. With this notion
of value equivalence as our foundation for refinement, we have mechanized the
following result:

Theorem 43. If · ` e e′ : Bool then e′ v e.

To prove this theorem, we once again construct a logical relation.15 This
is very much like the relation given for the session typed language, with two
notable exceptions (1) the type system is not affine, so all the interpretations
of the types in the relation are both affine and relevant propositions (meaning
they can be duplicated and thrown away, freely), (2) we need to model reference
and lock types. For references and locks we have:

isLock(γ, lk, lk′,True)

lk 'V lk′ : Lock

∃v, v′. l ↪→ v ∗ l′ ↪→s v
′ ∗ v 'V v′ : τ

l 'V l′ : Ref τ

where the boxed assertion in the premise of the second rule is an Iris invariant.
These were not described in the main text, so the reader unfamiliar with the
original work on Iris can think of them as a single-state STS16. The first rule
means that lock types are just interpreted as the isLock(−,−,−,−) assertion
we saw before. The fourth parameter is True because for purposes of the type
translation, we don’t care what resource the programmer is intending to protect

15 The logical relation in our Coq formalization is actually formulated generically with
respect to a pair of lock implementations, assumed to satisfy weakest precondition
specifications like the ones given above for the ticket and CLH lock. The mechaniza-
tion then instantiates this generic formulation with the particular results about the
ticket and CLH locks.

16 In fact, the STS construct is derived from invariants.
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Var
Γ (x) = τ

Γ ` x x : τ

Int
Γ ` n n : Int

Unit
Γ ` () () : Unit

Bool
Γ ` b b : Bool

Pair-Intro
Γ ` e1  e′1 : τ1 Γ ` e2  e′2 : τ2

Γ ` (e1, e2) (e′1, e
′
2) : τ1 × τ2

Pair-Fst
Γ ` e e′ : τ1 × τ2
Γ ` fst e fst e′ : τ1

Pair-Snd
Γ ` e e′ : τ1 × τ2

Γ ` snd e snd e′ : τ2

Sum-Left
Γ ` e e′ : τ1

Γ ` inl e inl e′ : τ1 + τ2

Sum-Right
Γ ` e e′ : τ2

Γ ` inr e inr e′ : τ1 + τ2

Sum-Elim
Γ ` e e′ : τ1 + τ2 Γ ` e1  e′1 : τ1 → τ Γ ` e2  e′2 : τ2 → τ

Γ ` case(e, e1, e2) case(e′, e′1, e
′
2) : τ

Seq
Γ ` e1  e′1 : τ1 Γ ` e2  e′2 : τ2

Γ ` e1; e2  e′1; e′2 : τ2

Fun-Intro
Γ, f : τ1 → τ2, x : τ1 ` e e′ : τ2

Γ ` rec f x. e rec f x. . e′ : τ1 → τ2

Fun-Elim
Γ ` e1  e′1 : τ1 → τ2 Γ ` e2  e′2 : τ1

Γ ` e1 e2  e′1 e
′
2 : τ2

Fork
Γ ` ef  ef

′ : τ

Γ ` fork{ef} fork{ef ′} : Unit

Load
Γ ` e e′ : Ref τ

Γ `!e !e′ : τ

Store
Γ ` e e′ : Ref τ Γ ` es  e′s : τ

Γ ` e := es  e′ := e′s : Unit

Send
Γ1 ` E1 : !τ. S Γ2 ` E2 : τ

Γ1 ] Γ2 ` send(E1, E2) : S

Lock-Intro
Γ ` ticketnew CLHnew : Unit→ Lock

Lock-Elim
Γ ` el  e′l : Lock Γ ` e e′ : Unit→ τ

Γ ` ticketsync el e CLHsync e′l e
′ : τ

ticketsync el e , λlk, f. ticketacq lk; let z = e () in (ticketrel lk; z)

CLHsync e′l e
′ , λlk, f. CLHacq lk; let z = e′ () in (CLHrel lk; z)

Fig. 6. Type directed translation between programs using ticket lock and CLH locks.
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with the lock. The second says that two heap locations are related at reference
type Ref τ if there is an invariant enforcing that they must always point to values
that are related at the interpretation of τ .

Using these definitions, we can prove a fundamental lemma showing that if
· ` e  e′ : τ , then e 'E e′ : τ holds. Then, we show a soundness lemma that
states that if e 'E e′ : Bool, then e v e′. By composing these two results, we
obtain Theorem 43.
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