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Abstract. We mechanize a theorem by Karp, along with several exten-
sions, that provide an easy to use “cookbook” method for verifying tail
bounds of randomized algorithms, much like the traditional “Master The-
orem” gives bounds for deterministic algorithms. We apply these results
to several examples: the number of comparisons performed by Quick-
Sort, the span of parallel QuickSort, the height of randomly generated
binary search trees, and the number of rounds needed for a distributed
leader election protocol. Because the constants involved in our symbolic
bounds are concrete, we are able to use them to derive numerical prob-
ability bounds for various input sizes for these examples.

1 Introduction

Formal verification of randomized algorithms remains a challenging problem.
In recent years, a number of specialized program logics [8, 10, 11, 39, 46] and
automated techniques [21, 6, 20] have been developed to analyze these programs.
In addition, a number of randomized algorithms have been verified directly in
interactive theorem provers [28, 27, 57] without using intermediary program
logics. Besides establishing correctness results, much of this work has focused
on verifying the expected or average cost of randomized algorithms. Although
expectation bounds are an important first step in cost analysis, there are other
stronger properties that often hold. For many randomized algorithms, we can
establish tail bounds which bound the probability that the algorithm takes more
than a given amount of time.

For example, it is well known that randomized QuickSort performs O(n log n)
comparisons on average when sorting a list of length n, and this fact has been
verified in theorem provers before [28, 57]. However, not only does it doO(n log n)
comparisons on average, but the probability that it does more than O(n log n)
comparisons is vanishingly small for sufficiently large lists. To be precise, let
Wn be the number of comparisons when sorting a list of length n. Then, for
any positive k there exists ck such that Pr [Wn > ckn log n] <

1
nk . When we say

that such ck exist, we mean so in a constructive and practical sense: we can
actually determine them and they are not absurdly large, so that one can derive
interesting concrete bounds. For instance, when n is 10 million, the probability
that Wn is greater than 8n log2 n is less than 10−9. These kinds of tail bounds
hold for many other classical randomized algorithms and are often stronger than
asymptotic expectation bounds.
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Despite this, there is a good reason for the prior emphasis on expectation
bounds rather than tail bounds in the field of formal methods: tail bounds on
running time are usually quite difficult to derive. Common approaches for deriv-
ing these bounds involve the use of methods from analytic combinatorics [32] or
the theory of concentration of measure [26]. Although these techniques are very
effective, to be able to use them in a theorem prover one would first need to be
able to mechanize the extensive body of results that they depend upon.

The need for “cookbook” methods. Let us contrast the difficulty mentioned above
with the (relative) ease of analyzing deterministic algorithms. For deterministic
divide-and-conquer algorithms, the cost is often given by recurrences of the form

W (x) = a(x) +

n∑
i=1

W (hi(x)) (1)

where the “toll” function a(x) represents the cost to process an input and divide
it into subproblems of size h1(x), ... , hn(x), which are then solved recursively. Ev-
ery undergraduate algorithms course covers “cookbook” techniques such as the
Master Theorem [24, 13] that can be used to straightforwardly derive asymp-
totic bounds on these kinds of recurrences. Moreover, these results can also be
used to easily analyze recurrences for other types of resource use, such as the
maximum stack depth or the span of parallel divide-and-conquer algorithms [15].
Recurrences for these kinds of resources have the form:

S(x) = b(x) +
n

max
i=1

S(hi(x)) (2)

We will call recurrences of the form in Equation 1 “work recurrences” and those
of the form in Equation 2 “span recurrences”. Although Equation 2 does not fit
the format of the Master Theorem directly, when S is monotone the recurrence
simplifies to S(x) = b(x) + S(maxni=1(hi(x))) and so can be analyzed using the
Master Theorem.

What is nice about these methods is that they give a process for carrying
out the analysis: find the toll function, bound the size of recursive problems, and
then use the theorem. Even if the first two steps might require some ingenuity,
the method at least suggests an approach to decomposing the problem.

Besides being easy to use, results like the Master Theorem do not have many
mathematical prerequisites. This makes them ideal for use in interactive theorem
provers. Indeed, Eberl [29] has recently mechanized the more advanced Akra and
Bazzi [2] recurrence theorem in Isabelle and has used it to derive asymptotic
bounds for a number of recurrence relations.

For randomized divide-and-conquer algorithms, the same recurrence relations
arise, except the hi(x) are random variables because the algorithms use random-
ness to divide the input into subproblems. Because of the similarity between de-
terministic and probabilistic recurrences, textbook authors sometimes give the
following heuristic argument before presenting a formal analysis [24, p. 175–177]:
In an algorithm like QuickSort, the size of the sublists generated by the partition-
ing step can be extremely unbalanced in the worst case, but this happens very
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rarely. In fact, each sublist is unlikely to be much more than 3
4 the length of the

original list. And, for a deterministic recurrence likeW (n) = n+W ( 34n)+W ( 34n),
the master theorem says the result will be O(n log n). Thus, intuitively, we should
expect the average running time of Quicksort to be something like O(n log n).

This raises a natural question: Is there a variant of the Master Theorem
that can be used to justify this kind of heuristic argument? Moreover, because
Equation 2 does not simplify to a version of Equation 1 in the randomized
setting1, we ideally want something that can be used to analyze recurrences of
both forms.

For the case where there is only a single recursive call (so that n = 1 above),
Karp [40] developed such a result. At a high-level, using Karp’s theorem in-
volves two steps. First, bound the average size of the recursive subproblem by
finding a function m such that E [h1(x)] ≤ m(x). Next, find a solution u to the
deterministic recurrence relation

u(x) ≥ a(x) + u(m(x))

Then the theorem says that for all positive integers w,

Pr [W (x) > u(x) + wa(x)] ≤
(
m(x)

x

)w

There are a few side conditions on the functions m and u which are usually easy
to check. Although this method generally does not give the tightest possible
bounds, they are often strong. Recently, Karp’s technique has been extended [56]
to the case for n > 1 for both span and work recurrences.

Our Contribution. In this paper, we present a mechanization of Karp’s theorem
and these extensions in Coq, and use it to develop verified tail bounds for (1)
the number of comparisons in sequential QuickSort, (2) the span arising from
comparisons in parallel QuickSort, (3) the height of a randomly generated binary
search tree, and (4) the number of rounds needed in a distributed randomized
leader election protocol. By using the Coq-Interval library [44] we are able to
instantiate our bounds in Coq to establish numerical results such as the 10−9

probability bound for QuickSort quoted above. To our knowledge, this is the
first time these kinds of bounds have been mechanized.

We start by outlining the mechanization of probability theory that our work
is based on (§2). We then describe Karp’s theorem and its extensions in more
detail (§3). To demonstrate how Karp’s result is used, we describe our verification
of the examples mentioned above, with a focus on the sequential QuickSort
analysis (§4). Of course, formalization often requires changing parts of a paper
proof, and our experience with Karp’s theorem was no different. We discuss the
issues we encountered and what we had to change in §5. Finally, we compare our
approach to related work (§6) and conclude by discussing possible extensions
and improvements to our development (§7).

The Coq development described in this paper is available at https://github.
com/jtassarotti/coq-probrec.
1 This is because in general E [max(X1, X2)] ≥ max(E [X1] ,E [X2]).

https://github.com/jtassarotti/coq-probrec
https://github.com/jtassarotti/coq-probrec
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2 Probability Preliminaries

2.1 Discrete Probability

We first need a set of basic results and definitions about probabilities and ex-
pectations to be able to even state Karp’s theorem. We had to decide whether
to use a measure-theoretic formulation or restrict ourselves to discrete distribu-
tions. Although the Isabelle standard library has an extensive formalization of
measure theoretic probability, we are not aware of a similarly complete set of
results in Coq (we discuss existing libraries later in §6). Moreover, the applica-
tions we had in mind only involved discrete distributions, so we did not need
the extra generality of the measure-theoretic approach. To keep things simple,
we decided to develop a small library for discrete probability theory. Defining
probability and expectation for discrete distributions still involves infinite series
over countable sets, which can raise some subtle issues involving convergence.
We use the Coquelicot real analysis library [17] to deal with infinite series.

The definition of probability distributions is given in Figure 1. We repre-
sent them as a record type parameterized by a countable type. We use the
ssreflect [34] library’s definition of countable types (countType), which con-
sists of a type A equipped with a surjection from nat to A.

The distribution record consists of three fields: (1) a probability mass function
pmf : A→ R that assigns a probability to each element of A, (2) a proof that pmf a

is non-negative for all a, and (3) a proof that the countable series that sums pmf a

over all a converges and is equal to 1.
Random variables on a distribution (rvar) are functions from the underlying

countable space A to some other type B. The expected value of a real-valued
random variable is defined in the usual way as the series

∑
r∈img(X) Pr [X = r] ·r.

Because the underlying distribution is discrete, the image of the random variable
is a countable set, so we can define such a series.

Of course, expectations of discrete random variables do not always exist,
because the above series may not converge absolutely. Because of this, even with
the restriction to discrete probability, dealing with infinite series and issues of
convergence can often be tedious. In actuality, many randomized algorithms only
involve finite distributions. For random variables defined on such distributions,
the expectation always exists, because the series is actually just a finite sum. For
our mechanization of Karp’s theorem, we restrict to these finite distributions.

2.2 Monadic Encoding

We represent sequential and parallel randomized algorithms in Coq using a
monadic encoding. Variants of this kind of representation have been used in
many prior formalizations and domain specific languages [52, 3, 9, 50].

The type ldist A represents probabilistic computations that result in val-
ues of type A. Such computations are represented as a finite list of values of
type A paired with the probabilities that these values occur. The bind opera-
tion dist_bind l f represents the process of performing the computation rep-
resented by l to obtain a random element of type A (i.e., “sampling” from the
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Record distrib (A: countType) := mkDistrib {
pmf :> A -> R; pmf_pos : forall a, pmf a >= 0;
pmf_sum1 : is_series (countable_sum pmf) 1

}.

Definition pr {A: countType} (O: distrib A) (P: A -> bool) :=
Series (countable_sum (fun a => if P a then O a else 0)).

Record rvar {A} (O: distrib A) (B: eqType) := mkRvar {
rvar_fun :> A -> B;

}.

Definition pr_eq {A} {B: eqType} (O: distrib A) (X: rvar O B) (b: B) :=
pr O (fun a => X a == b).

Definition Ex {A} (O: distrib A) (X: rrvar O) : Rbar :=
Series (countable_sum (fun r => (pr_eq X r * r))).

Fig. 1. Basic definitions for discrete probability distributions and random variables.

distribution represented by l), and then passing this to f. The return operation
(dist_ret) applied to a corresponds to the probabilistic computation that sim-
ply returns a with probability 1. We use Coq’s notation mechanism to represent
binding m in e by writing x← m; e, and write mret a for returning a.

3 Karp’s Theorem

Now that we have a formalization of the basic concepts of probability theory
and a way to describe randomized algorithms in Coq, we can give a more careful
explanation of Karp’s theorem and its extensions.

3.1 Unary Recurrences

The setting for Karp’s theorem is more general than the informal account we
gave in the introduction. Specifically, he assumes that there is a set I of algorithm
inputs, a function size : I → R≥0 such that size(z) is the “size” of input z, and
a family of random variables h(z) which correspond to the new problem that is
passed to the recursive call of the algorithm. The random variable W (z), which
represents the cost of the algorithm when run on input z, is assumed to obey
the following unary recurrence:

W (z) = a(size(z)) +W (h(z)) (3)

Although the intent of this recurrence is clear, it requires some care to interpret:
on the right hand side, h(z) is a random variable, but it is given as an argument to



6 Joseph Tassarotti and Robert Harper

W , which technically has I as a domain, not I-valued random variables. Instead,
we should read this not as the composition W ◦ h applied to z, but rather as a
specification for the process which first generates a random problem according
to h(z) and then passes it to W . In other words, this part of the recurrence is
really describing a monadic process of the form:

z′ ← h(z);W (z′)

Already, Equation 3 addresses a detail that is often glossed over in informal
treatments of randomized algorithms. In informal accounts, one often speaks
about a random variable W (n), which is meant to correspond to the number of
steps taken by an algorithm when processing an instance of size n. The issue is
that usually, the exact distribution depends not just on the size of the problem
but also the particular instance, so it is somewhat sloppy to regard W (n) as a
random variable (admittedly, we did so in §1). For instance, when randomized
QuickSort is run on a list containing duplicate elements, a good implementation
will generally perform fewer total comparisons. Even if one tries to avoid this
issue by, say, restricting only to lists that do not contain duplicates, one would
still need to prove that the distribution depends on the size of the list alone.
This is mostly harmless in informal treatments, but it is a detail that would
otherwise have to be dealt with in a theorem prover.

We assume there is some constant d that is the “cut-off” point for the re-
currence: when the input’s size drops below d no further recursive calls are
made. The function a : R → R≥0 is required to be continuous and increasing2

on (d,∞), but equal to 0 on the interval [0, d]. In addition, it is required that
0 ≤ size(h(z)) ≤ size(z), i.e., the size of the subproblem is not bigger than the
original.

Then, assume there exists some continuous function m : R→ R such that for
all z, E [size(h(z))] ≤ m(size(z)) and 0 ≤ m(size(z)) ≤ size(z)). Moreover, the
function m(x)/x must be non-decreasing. Karp then argues that if there exists
a solution to the deterministic recurrence relation τ(x) = a(x) + τ(m(x)), there
must be a continuous minimal solution u : R → R. He assumes such a solution
exists and derives the following tail bound for W in terms of u:

Theorem 1 ([40]). For all z and integer w such that size(z) > d,

Pr [W (z) > u(size(z)) + w · a(size(z))] ≤
(
m(size(z))

size(z)

)w

Because u is the minimal solution to the deterministic recurrence, we can
replace u with any other solution t in the above bound: if W (z) is greater than
the version with t, then by minimality of u, it must be bigger than the version
with u. This means we do not need to find a closed form for the minimal solution
u, because any solution will give us a bound.
2 In fact, the assumptions in [40] are slightly stronger than this. But as we discuss in
§5, we discovered that the weaker assumptions mentioned here are sufficient.
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It is important to note that m, a and u are all functions from R to R. This
means that we do not have to deal with subtle rounding issues that sometimes
come up when attempting to formalize solutions to recurrences for algorithms.
Eberl [29], in his formalization of the Akra-Bazzi theorem, has pointed out how
important this can be. The trade-off is that establishing that the recurrence
holds everywhere on the domain R can be harder, especially at the boundaries
where the recurrence terminates.

3.2 Extension to Binary Work and Span Recurrences

Although Theorem 1 makes it easier to get strong tail bounds, it cannot be used
in many cases because it only applies to programs with a single recursive call.

Tassarotti [56] describes an extension to cover the general case of work and
span recurrences with n > 1 recursive calls. In our mechanization, we only
handle the case where there are two recursive calls (so that n = 2) because this
is sufficient for many examples. In this setting, we now have two random variables
h1 and h2 giving the recursive subproblems. These variables are generally not
independent: for QuickSort, h1 would be the lower partition of the list and h2
would be the upper partition. However, it is assumed that there is some function
g1 : R→ R such that for all z ∈ I and (z1, z2) in the support of (h1(z), h2(z)):

g1 (size(z1)) + g1 (size(z2)) ≤ g1 (size(z))

Informally, we can think of this function g1 as a kind of ranking function, and
the above inequality is saying that the combined rank of the two subproblems
is no bigger than that of the original problem. The function m is now required
to bound the expected value of the maximum size of the two subproblems:

E [max (size(h1(z)), size(h2(z)))] ≤ m(size(z))

For bounding span recurrences of the form:

S(z) ≤ a(size(z)) + max(S(h1(z)), S(h2(z))) (4)

we assume once more that u is a solution to the recurrence u(x) ≥ a(x)+t(m(x)).
Then we have:

Theorem 2. For all z and integer w such that size(z) > d and g1(size(z)) > 1,

Pr [S(z) > u(size(z)) + w · a(size(z))] ≤ g1(size(z)) ·
(
m(size(z))

size(z)

)w

The difference between the bound above and the one in Theorem 1 is the
additional factor g1(size(z)). Generally speaking, g1(size(z)) will be bounded
by a polynomial, so that in comparison to

(
m(size(z))
size(z)

)w
, which decreases expo-

nentially with respect to w, the effect is negligible.
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The bound for binary work recurrences is slightly different. Given the recur-
rence:

W (z) ≤ a(size(z)) +W (h1(z)) +W (h2(z)) (5)

we need a second “ranking” function g2 with the same property that g2 (size(z1))+
g2 (size(z2)) ≤ g2 (size(z)) for all z1 and z2 in the support of the joint distribu-
tion (h1(z), h2(z)) when size(z) > d. In the proof by Tassarotti [56], this second
ranking function is used to transform the work recurrence into a span recurrence
which is then bounded by Theorem 2, and this bound is converted back to a
bound on the original recurrence. From the perspective of the user of the theo-
rem, we now need u to solve the deterministic recurrence u(x) ≥ a(x)

g2(x)
+u(m(x)),

and we obtain the following bound:

Theorem 3. For all z and integer w such that size(z) > d and g1(size(z)) > 1,

Pr [W (z) > g2(size(z)) · u(size(z)) + w · a(size(z))] ≤ g1(size(z))·
(
m(size(z))

size(z)

)w

Observe that on the left side of the bound, we re-scale u by a factor of g2(size(z))
because it was the solution to a recurrence in which we normalized everything
by g2.

The above results let us fairly easily obtain tail bounds for a wide variety
of probabilistic recurrences arising in the analysis of randomized divide-and-
conquer algorithms. In the next section, we demonstrate their use by verifying a
series of examples. After showing how they are used, we return to the discussion
of the results themselves in §5, where we describe issues we encountered when
trying to translate the paper proofs into Coq.

4 Examples

We now apply the results developed in the previous sections to several examples.

4.1 Sequential QuickSort

Our first example is bounding the number of comparisons performed by a sequen-
tial implementation of randomized QuickSort. To count the number of compar-
isons that the monadic implementation of the algorithm performs, we combine
the probabilistic monad from §2.2 with a version of the writer monad that in-
crements a counter every time a comparison is done. This cost monad is defined
by:

Definition cost A := (nat * A).
Definition cost_bind {A B} (f: A -> cost B) x :=
(x.1 + (f (x.2)).1, (f (x.2)).2).

Definition cost_ret {A} (x: A) := (0, x).
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A computation of type cost A is just a pair of a nat, representing the count
of the number of comparisons, and an underlying value of type A. The bind oper-
ation sums costs in the obvious way. We can then define a version of comparison
in this monad:
Definition compare (x y: nat) :=
(1, ltngtP x y).

where ltngtP is a function from the ssreflect library that returns whether
x < y, x = y, or x > y.

The code3 for QuickSort is given in Figure 2. This is the standard randomized
functional version of QuickSort: For empty and singleton lists, qs simply returns
the input. Otherwise, it selects an element uniformly at random from the list
using draw_pivot. It then uses partition to split the list into three parts:
elements smaller than the pivot, elements equal to the pivot, and elements larger
than the pivot. Elements smaller and larger than the pivot are recursively sorted
and then the results are joined together. Partition uses the compare operator
defined above, which implicitly counts the comparisons it performs.

Fixpoint qs l : ldist (cost (list nat)) :=
match l as l’ return with
| [::] => mret ([::])
| [::a] => mret ([::a])
| (a :: b :: l’) =>
p <- draw_pivot (a :: b :: l’);
’(lower, middle, upper) <- partition p l;
ls <- qs (lower);
us <- qs (upper);
mret (ls ++ middle ++ us)

end

Fig. 2. Simplified version of code for sequential QuickSort. In ssreflect, we write [::]
for the empty list and [:: a] for a list containing the single element a. Because random-
ized QuickSort is not structurally recursive, the actual definition in our development
defines it by well-founded recursion on the size of the input.

What is the probabilistic recurrence for this algorithm? In each round of the
recursion, the algorithm performs n comparisons to partition a list of length n.
So, taking the size function to be the length of the list, we have the toll function
a(x) = x. There are two recursive calls, and we have to sum the comparisons
performed by each to get the total, so we need to use Theorem 3.

The h1 and h2 functions giving the recursive subproblems correspond to the
lower and upper sublists returned by partition. We now need to bound the
3 The definition in our development is actually defined by well-founded induction on
the size of the input, because the Coq termination checker cannot determine that
this definition always terminates.
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expected value of the maximum of the sizes of these two lists. We first show:

E [max (size(h1(l)), size(h2(l)))] ≤
1

size(l)

size(l)−1∑
i=0

max(i, size(l)− i− 1)

To get some intuition for this inequality, imagine the input list l was already
sorted. In this situation, if the pivot we draw is in position i, then the sublist of
elements less than i only contains elements to the left of i in l and the sublist of
elements larger than i contains only elements to the right of i in l. The size of each
sublist is therefore at most i and size(l)−i−1, respectively, which corresponds to
the ith term in the sum above. The factor of 1

size(l) is the probability of selecting
each pivot index, because they are all equally likely. Of course, the input list is
not actually sorted, but when we select pivot position i, we can consider where
its position would be in the final sorted list, and the result is just a re-ordering
of the terms in the sum.

Next we show by induction on n that:
n−1∑
i=0

max(i, n− i− 1) =

(
n

2

)
+
⌊n
2

⌋
·
⌈n
2

⌉
≤ 3n2

4

We combine the two inequalities to conclude:

E [max (size(h1(l)), size(h2(l)))] ≤
3

4
· size(l)

The above bound is for the case when the list has at least 2 elements; other-
wise the recursion is over so that the sublists have length 0. Hence we can define
m to be m(x) = 0 for x < 4/3 and m(x) = 3x

4 otherwise. We use 4/3 as the
cut-off point rather than 2 because it makes the recurrence easier to solve.

To use Theorem 3, we need to come up with two “ranking” functions g1 and
g2 such that gi(size(h1(z))) + gi(size(h2(z))) ≤ gi(size(z)) for each i. Ideally,
we want g1 to be as small as possible, because it scales the final bound we
derive, whereas for g2 we want to pick something that makes it easy to solve
the recurrence t(x) ≥ a(x)/g2(x)+ t(m(x)). Like the derivation of the bound m,
these parts of the proof are not automatic and require some experimentation.
We define the following choices for the parameters of Theorem 3:

g1(x) = x g2(x) =


1
2 x ≤ 1

x
x−1 1 < x < 2

x x ≥ 2

t(x) =

1 x ≤ 1

log 4
3
x+ 1 x > 1

We can check g1 and g2 satisfy the necessary conditions, and that t is a solution
to the resulting deterministic recurrence relation.

Writing T (x) for the total number of comparisons performed on input x,
Theorem 3 now gives us:

Pr
[
T (x) > size(x) · log4/3(size(x)) + 1 + w · size(x)

]
≤ size(x) ·

(
3

4

)w
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for l such that size(x) > 1. More concisely, if we set n = size(x), then this
becomes:

Pr
[
T (x) > n log4/3 n+ 1 + wn

]
≤ n ·

(
3

4

)w

In Coq, this is rendered as:

Theorem bound x w:
rsize x > 1 ->
pr_gt (T x) (rsize x * (k * ln (rsize x) + 1) + INR w * rsize x)
<= (rsize x) * (3/4)^w.

where k = 1
ln 4/3 , rsize returns the length of a list as a real number, and

INR : nat→ R coerces its input into a real number.
To understand the significance of these bounds, consider the case when w =

bc · log4/3 nc for some constant c. Then, using the above we get:

Pr
[
T (x) > (c+ 1)n log4/3 n+ 1

]
≤ Pr

[
T (x) > n log4/3 n+ 1 + wn

]
(6)

≤ n ·
(
3

4

)w

≤ n ·
(
3

4

)c log4/3 n−1

(7)

=
4

3
· 1

nc−1
(8)

so that when c > 2, the probability goes very quickly to 0 for lists of even
moderate size.

We can now use the Coq-Interval library, which provides tactics for estab-
lishing numerical inequalities, to compute the value of this bound for particular
choices of n. In particular, we can establish the claim from the introduction:
when sorting a list with 10 million elements, the probability that QuickSort
performs more than 8n log2 n comparisons is less than 10−9.

Remark concrete2:
forall l, rsize l = 10 ^ 7 ->

pr_gt (T l) (10^7 * (8 * 1/(ln 2) * ln (10^7))) <= 1/(10^9).

4.2 Other Examples

We have mechanized the analysis of three other examples using Karp’s theorem.
A discussion of these examples is given in the appendix of the full version of this
paper available as supplementary material. Here we give a brief description of
the examples:

1. Parallel QuickSort: using Theorem 2 we show that the longest chain of se-
quential dependencies from comparisons in a parallel version of QuickSort is
O(log(n)) with high probability.
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2. Binary search tree: we analyze the height of a binary search tree which is
generated by inserting a set of elements under a random permutation. We
show the height is O(log(n)) with high probability using Theorem 2.

3. Randomized leader election: we consider a protocol for distributed leader
election that has been analyzed by several authors [31, 51]. The protocol
consists of stages called “rounds”. At the beginning of a round, each active
node generates a random bit. If the bit is 1, the node remains “active” and
sends a message to all the other nodes; otherwise, if the bit is 0 it becomes
inactive and stops trying to become the leader. If every active node generates
a 0 within a round, no messages are sent and instead of becoming inactive,
those nodes try again in the next round. When there is only one active node
remaining, it is deemed the leader. We use Theorem 1 to show that with
high probability at most O(log n) rounds are needed.

5 Changes needed for mechanization

Anyone who has mechanized something based on a paper proof has probably
encountered issues that make it harder than just “translating” the steps of the
proof into the formal system. Even when the paper proof is correct, there are
inevitably parts of the argument that are more difficult to mechanize than they
appear on paper, and this can require changing the strategy of the proof.

Our experience mechanizing Karp’s theorem and its extensions was no differ-
ent. In this section we describe obstacles that arose in our attempt to mechanize
the proof.

5.1 Overview of proof

To put the following discussion in context, we need to give a sketch of the paper
proof. Recall that Theorem 1 says that if we have a probabilistic recurrence W
with a corresponding deterministic recurrence solved by u, then for all z and
integer w,

Pr [W (z) > u(size(z)) + w · a(size(z))] ≤
(
m(size(z))

size(z)

)w

The first thing one would naturally try to prove this is to proceed by in-
duction on the size of z. However, immediately one realizes that the induction
hypothesis needs to be strengthened: the bound above is only shown at each
integer w, so there are “gaps” in between where we do not have an appropriately
tight intermediate bound. To address this, Karp defines a function Dr which
“interpolates” the bound

(
m(size(z))
size(z)

)w
to fill in these gaps. This function Dr is

somewhat complicated, and is defined in a piecewise manner as follows:

1. If r ≤ 0 and x > 0, Dr(x) = 1
2. If r > 0:
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(a) If x ≤ d then Dr(x) = 0
(b) If x > d and u(x) ≥ r then Dr(x) = 1
(c) If x > d and u(x) < r then

Dr(x) =

(
m(x)

x

)d r−u(x)
a(x) e x

u−1(r − a(x)
⌈
r−u(x)
a(x)

⌉
)

This definition is intricate, especially the last case. However, if we set r =

u(size(z)) + w · a(size(z)), then Dr(size(z)) simplifies to
(

m(size(z))
size(z)

)w
, con-

firming the intuition that this is some kind of interpolation.
Next, define Kr(z) = Pr [W (z) > r]. Then, the result follows by showing that

Kr(z) ≤ Dr(size(z))

The probabilistic recurrence relation for W implies that:

Kr(z) ≤ E
[
Kr−a(size(z))(h(z))

]
(9)

when size(z) > d. Karp’s idea is to recursively define a sequence of functions
Ki

r for i ∈ N which approximate Kr. These are defined by:

K0
r (z) =

1 if r < u(d)

0 otherwise

Ki+1
r (z) = E

[
Ki

r−a(size(z))(h(z))
]

Note the similarity between the recursive case and the property in (9). For all i,
Ki

r(z) ≤ 1, so supiK
i
r(z) exists. Karp says then that Kr(z) ≤ supiK

i
r(z), so it

suffices to show that for all i, Ki
r(z) ≤ Dr(size(z)).

The proof is by induction on i. The base case is straightforward. For the
inductive case, the definition of Ki+1

r and the induction hypothesis give us:

Ki+1
r (z) = E

[
Ki

r−a(size(z))(h(z))
]

≤ E
[
Dr−a(size(z))(h(z))

]
So we just need to show that this final expected value is ≤ Dr(size(z)). The
key is the following simple lemma, which lets us bound the expected value of
suitable functions of random variables:

Lemma 1 ([40, Lemma 3.1]). Let X be a random variable with values in the
range [0, x]. Suppose f : R → R is a non-negative function such that f(0) = 0,
and there exists some constant c such that for all y ≥ c, f(y) = 1 and f(y)/y is
non-decreasing on the interval (0, c]. Then:

E [f(X)] ≤ E [X] f(min(x, c))

min(x, c)
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Applying this with X = size(h(z)), f = Dr−a(size(z)), and suitable choice of
c gives us the desired result. Of course, we need to check that this choice of
f satisfies the conditions of the lemma. In particular, showing that f(y)/y is
non-decreasing is somewhat involved, and it is here that the various continuity
assumptions on parameters like a are used.

Once the inductive proof is finished, we set set r = u(size(z))+w ·a(size(z)),
to get the form of the bound in the statement of the theorem.

5.2 Changes

Termination assumption. The first problem we had was that we were unable to
prove that Kr(z) ≤ supiK

i
r(z). In the original paper proof, this inequality is

simply stated without further justification. Young [58] has suggested that in fact
one may need stronger assumptions on W or h to be able to conclude this and
suggests two alternatives. Either W can be assumed to be a minimal solution to
the probabilistic recurrence, or one can assume that the recurrence terminates
with probability 1, that is Pr [hn(z) > d] → 0 as n → ∞. In the end, we chose
to make the latter assumption, because it is easy to show for most examples.

Existence of a minimal solution. Karp argues that if there is a solution to the
deterministic recurrence relation, there must be a minimal solution u. The results
in the theorem are then stated in terms of u. It seemed to us more efficient to
simply state the results in terms of any continuous and invertible solution t to
the recurrence relation. In this way, we avoid the need to prove the existence,
continuity, and invertibility of the minimal solution. In fact, rather than assuming
t is invertible on its full domain, we merely assume that there exists a function t′
which is an inverse to t on the subdomain (d,∞), that is: t′(t(x)) = x for x > d
and t(t′(x)) = x for x > t(d). The definition of D is then changed to replace
occurrences of u with t.

Division by zero. The original piecewise definition of D above involves division
by u−1(r − a(x)

⌈
r−u(x)
a(x)

⌉
). However, it is not clear that this is always non-zero

on the domain considered, and this is not explicitly discussed in the paper proof.
Since we replace the u−1 function with a user supplied function t′, we found it
easier to simply require an explicit assumption that t′ is non-zero everywhere.

Unneeded assumptions. In the original paper proof, the toll function a is assumed
to be everywhere continuous and strictly increasing on [d,∞) . This rules out
recurrences like W (z) = 1 +W (h(x)) which show up in examples such as the
leader election protocol. For that reason, there is actually an additional result
in Karp [40] for the particular case where a(x) = 0 for x ≤ d and 1 otherwise.

However, after finishing the mechanization of Theorem 1, we suspected that
the assumptions on a could be weakened, avoiding the need for the additional
lemma. We changed the assumptions to only require that a was monotone and
continuous on the interval (d,∞). In turn, we require the function t which solves
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the deterministic recurrence to be strictly increasing on the interval (d,∞). Our
prior proof script worked mostly unchanged: most of the changes actually ended
up deleting helper lemmas we had needed under the original assumptions. This
is not because our proof scripts were highly automated or robust, but because
the original proof really was not exploiting these stronger assumptions. Checking
this carefully with respect to the original paper proof would have been rather
tedious, but was straightforward with a mechanized version.

Extending to the binary case. In a technical report, Karpinski and Zimmermann
[41] claimed to extend Karp’s result to work and span recurrences with multiple
recursive calls, so we initially tried to verify their result. The argument is funda-
mentally like Karp’s original proof, so many steps were described briefly because
they were intended to be similar to the corresponding parts of the proof of The-
orem 1. However, we were unable to prove that their analogue of the Dr function
satisfied the assumptions of Lemma 1, and so we were stuck at the correspond-
ing step of the induction argument. It was at this point that we mechanized the
results from Tassarotti [56] instead.

6 Related Work

6.1 Verification of Randomized Algorithms and Mechanized
Probability Theory

Audebaud and Paulin-Mohring [3] developed a different monadic encoding for
reasoning about randomized algorithms in Coq that can represent randomized
algorithms that do not necessarily terminate. It would be interesting to try to
generalize our version of Karp’s theorem and apply them to programs expressed
using this monad.

Barthe et al. [9] develop a probabilistic variant of Benton’s relational Hoare
logic [14] called pRHL to do relational reasoning about pairs of randomized
programs. Extensions to and applications of pRHL for reasoning about proba-
bilistic programs have been developed in a series of papers [10, 7, 11], and this
kind of relational reasoning has been implemented in the EasyCrypt tool [5].
There are many other formal logics for reasoning about probabilistic programs
(e.g., [53, 8, 48, 42]). Kaminski et al. [39] presented a weakest-precondition logic
that can be used to establish expected running time. As an example, they proved
a bound on the expected number of comparisons used by QuickSort. The sound-
ness of their logic was later mechanized by Hölzl [36] in Isabelle.

Van der Weegen and McKinna [57] mechanized a proof of the average number
of comparisons performed by QuickSort in Coq, and used monad transformers
to elegantly separate reasoning about correctness and cost while still being able
to extract efficient code. Eberl [28] has recently mechanized a similar result, as
well as bounds on the expected depth and height of binary search trees [27].
Haslbeck et al. [35] have verified expected height bounds for treaps, which re-
quires measure theoretic probability because of the way that treap algorithms
sample from continuous distributions. See the overview by Eberl et al. [30] for a
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description of the mechanizations from [28, 27, 35]. Eberl [29] also mechanized
the Akra-Bazzi theorem, a generalization of the Master Theorem for reasoning
about deterministic divide and conquer recurrences.

More generally, multiple large developments of probability theory have been
carried out in several theorem provers, including large amounts of measure the-
ory [38, 37], the Central Limit Theorem [4], Lévy and Hoeffding’s inequali-
ties [25], and information theory [1], to name just some of these results.

6.2 Techniques for Bounds on Randomized Algorithms

There are a vast number of tools and results that have been developed for an-
alyzing properties of randomized algorithms; see [47, 49, 32, 26] for expository
accounts of both simple and more advanced techniques. Different “cookbook”
methods like Karp’s also exist: Bazzi and Mitter [12] developed a variant of
the Akra-Bazzi master theorem for deriving asymptotic expectation bounds for
work recurrences. Roura [54] presented a master theorem that also applies to
recurrences like that of the expected work for QuickSort.

Chaudhuri and Dubhashi [23] extended the results of Karp [40] for unary
probabilistic recurrence relations by weakening some of the assumptions of The-
orem 1. Their proof used only “standard” techniques from probability theory
like Markov’s inequality and Chernoff bounds, so they argued that it is easier to
understand. Of course, this approach may be less beneficial for mechanization if
we do not have a pre-existing library of results.

7 Conclusion

We have described our mechanization of theorems by Karp [40] and Tassarotti
[56] that make it easier to obtain tail bounds for various probabilistic recurrence
relations arising in the study of randomized algorithms. To demonstrate the use
of these results, we have explained our verification of four example applications.
Moreover, we have shown that these results can be used to obtain concrete
numerical bounds, fully checked in Coq, for input sizes of practical significance.
To our knowledge, this is the first mechanization of these kinds of tail bounds
in a theorem prover.

In future work, it would be interesting to try to automate the inference of
the a, g1, and g2 functions used when applying Karp’s theorem. The resulting
deterministic recurrence could also probably be solved automatically, since more
complex recurrences have been analyzed automatically in related work (e.g.,
[22]). If these analyses are done as part of external tools, it would be useful
to be able to produce proof certificates that could be checked using the Coq
development we describe here, as in some other resource analysis tools [19, 18].

It should also be possible to extend the applicability of our mechanization
by handling arbitrary probability distributions instead of finite ones. Moreover,
it may be possible to use tools like the probabilistic relational Hoare logic of
Barthe et al. [9] to prove suitable refinements between imperative randomized
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algorithms and the functional versions we have analyzed here. This would allow
one to derive corresponding tail bounds on the imperative versions.
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A Appendix

A.1 Parallel Quicksort

In this example, we bound the span arising from comparisons in parallel Quick-
Sort. The span of an algorithm is the longest sequential chain of computations
that it performs. This measure is important because it affects how much perfor-
mance improvement we can expect by using more processors.

There are many cost models for parallelism, much like in the sequential set-
ting where we have everything from the RAM model and multitape Turing ma-
chines to language based cost models. Here we will consider something like the
cost model of the parallel language NESL [16]. In NESL, the span of functional
list operations like maps and filters is equal to the maximum span of applying
the operation to each element of the list, plus some constant overhead.

Because these overheads are constant, it makes sense to count just the span
arising from comparison operations when analyzing sorting algorithms4. This is
no different from what we do when comparing sequential sorting algorithms by
the number of comparisons they perform.

To track the work and span of a parallel computation, we modify the cost
monad from the previous example:

Record cost A := mkCost {
work : nat;
span : nat;
result : A;

}.

Definition cost_bind {A B} (f: A -> cost B) x :=
mkCost (work x + work (f (result x)))

(span x + span (f (result x)))
(result (f (result x))).

Definition cost_ret {A} (x: A) :=
mkCost 0 0 x.

Because bind represents sequential composition of code, we sum both the work
and span to get the total cost.

In contrast, when we run computations in parallel, we add their work together
to get the combined work, but only take the maximum of the spans. For example,
we represent the cost of parallel execution of a pair of computations by:

Definition par2 {A B} (a: cost A) (b: cost B) : cost (A * B) :=
{| result := (result a, result b) ;

4 As always, when we want to understand how an algorithm will perform on a par-
ticular machine, we have to consider whether our cost model is realistic. To account
for how parallel languages are implemented on some machines, there are other cost
models in which filter operations actually have a logn span overhead. This can affect
the asymptotic running time of algorithms like QuickSort, so a different analysis is
needed when considering those models.
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work := work a + work b;
span := max (span a) (span b) |}.

The n-ary parallel composition can be defined analogously. Similarly, parallel
maps and filters are defined to have the sum of the work of applying the operation
to each element of the list, whereas the span is the maximum.

The code for parallel QuickSort using these operations is shown in Figure 3.
As in sequential QuickSort, a pivot element is randomly selected from the list.
However, rather than making a single sequential pass through the list for par-
titioning, the parallel version runs three filter passes in parallel, which find the
sublists less than, equal to, and greater than the pivot. Then the lower and upper
sublists are sorted by parallel recursive calls, and the final results are combined
with the middle partition.

Definition partition (n: nat) (l: list nat) :=
par3 (parfilter (fun x => ltc x n) l)

(parfilter (fun x => eqc x n) l)
(parfilter (fun x => gtc x n) l);

Fixpoint qs l : ldist_cost (list nat) :=
match l as l’ return with
| [::] => mret ([::])
| [::a] => mret ([::a])
| (a :: b :: l’) =>
p <- draw_pivot (a :: b :: l’);
’(lower, middle, upper) <- partition p l;
’(ls, us) <- par2 (qs lower) (qs upper);
mret (ls ++ (middle) ++ us)

end

Fig. 3. Simplified version of code for parallel QuickSort.

Of course, the parallel version does more total comparisons, because each of
the three filters compares the pivot against every element of the list. But, all of
these happen in parallel, so the span arising from each step of the recursion is just
1. Thus, we know the following definition of a bounds the span for partitioning:

a(x) =


0 x ≤ 1

x− 1 1 < x < 2

1 x ≥ 2

The definition of a on the interval (1, 2) is chosen so that it is continuous on
the interval (1,∞), as required by Theorem 2. Of course, the hi are the same
as in sequential QuickSort, so we can re-use the same bound m(x) = 3x

4 , with
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essentially the same proof. The resulting recurrence, t(x) = a(x)+t(m(x)) is then
the same as for the sequential recurrence5, so we once again have the solution
t(x) = log4/3(x) + 1. We also re-use g1(x) = x from the sequential analysis, and
then Theorem 2 implies:

Pr
[
T (x) > log4/3 n+ 1 + w

]
≤ n ·

(
3

4

)w

A.2 Height of Binary Search Tree

Our third example is the average height of a binary search tree generated by
inserting the elements of a list in random order. When elements are inserted this
way, the tree will have logarithmic height with very high probability, as opposed
to the worst-case possibility of linear height. Of course, we cannot always assume
that elements are inserted in this random order, so data structures like treaps [55]
and randomized binary search trees [45] use randomness in a way that mimics
the effects of random insertion order.

Our implementation is based on a generic definition of search trees in the
Coq standard library. This tree datatype is parameterized by a type of “auxil-
iary information” which is stored in each node in addition to the key. For the
implementations of balanced trees in the Coq standard library, this auxiliary
information is the data used to maintain the invariants needed for balancing
(e.g., the color of a node for Red-Black trees). The tree data type has two con-
structors: Leaf and Node a tl x tr, where a is auxiliary information, tl and
tr are the left and right subtrees of a node, and x is the key stored in the node.

Because our goal for this example is to study the height of non-balancing
trees, we do not need additional information, so the type of our auxiliary in-
formation is just unit. The code defining insertion and the height of a tree is
shown in Figure 4. We consider the height of a tree with a single node to be 0.
The function add_list_random l t inserts the elements of list l into the tree
t by repeatedly removing a random element from the list and inserting it into
the tree, until the list is empty.

This random process of generating a tree does not match the “divide-and-
conquer” format of the Karp-style theorems: there are no random h1 and h2
which divide the input into subproblems that are then processed recursively.
Rather, at each step exactly 1 element is removed and inserted.

However, it is well known [45] that this process is actually equivalent to one in
which the divide-and-conquer nature is explicit and similar to that of QuickSort.
Observe that, when the tree t is a leaf, and element p is selected first from l for
insertion, all of the remaining elements of l that are less than p will be inserted
in the left subtree of the root node containing p, and all of the larger elements
will be in the right subtree. We can express this recursive version in Coq as:

5 Observe that the result of dividing the toll function for sequential QuickSort by the
g2 function used there gives the toll function for parallel QuickSort.
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Fixpoint add (x: nat) (t: tree) :=
match t with
| Leaf => Node tt Leaf x Leaf
| Node _ tl v tr =>
match (Nat.compare x v) with
| Eq => t
| Lt => Node tt (add x tl) v tr
| Gt => Node tt tl v (add x tr)

end
end.

Fixpoint height (t: tree) :=
match t with
| Leaf => 0
| Node _ Leaf v Leaf => 0
| Node _ tl v tr =>
1 + (max (height tl) (height tr))

end.

Fixpoint add_list_random (l: list nat) (t: tree) :=
match l with
| [::] => mret t
| [::a] => mret (add a t)
| (a :: b :: l’) =>

p <- draw_next (a :: b :: l’);
add_list_random (rem p (a :: b :: l’)) (add p t)

end.

Fig. 4. Code for binary search tree insertion and adding a list of elements in random
order.
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Fixpoint rand_tree_rec l :=
match l with
| [::] => mret Leaf
| [::a] => mret (Node tt Leaf a Leaf)
| (a :: l) => p <- draw_next a l;

tl <- rand_tree_rec [seq i <- (a :: l) | (i < p)];
tr <- rand_tree_rec [seq i <- (a :: l) | (i > p)];
mret (Node tt tl p tr)

end.

In this format, we can apply Theorem 2 to analyze the height of the resulting
tree. The first step in our proof, therefore, is to prove that these two constructions
yield equal distributions. We handle only the case when the list l has no duplicate
elements, which simplifies the proof:

Lemma alr_rt_perm l:
uniq l ->
eq_dist (rvar_of_ldist (add_list_random l Leaf))

(rvar_of_ldist (rand_tree_rec l)).

From there, we can bound the height of trees generated by rand_tree_rec
and convert them to bounds on add_list_random. Because the height of a non-
singleton tree is 1 more than the maximum of the heights of its children, we
will use Theorem 2, and we can re-use the exact same choice of a, m, and g1 as
we did for the parallel span of QuickSort. Letting T (l) be the height of the tree
generated from a list l of length n containing no duplicates, we obtain:

Pr
[
T (l) > log4/3 n+ 1 + w

]
≤ n ·

(
3

4

)w

Using this bound, we can verify in Coq that a tree generated from a list with 10
billion elements has height greater than 300 with probability less than 10−15:

Remark concrete:
forall l, uniq l -> rsize l = 10 ^ 10 ->

pr_gt (T l) 300 <= 1/(10^15).

Before moving to the final example, let us acknowledge that these two exam-
ples are very similar to the sequential QuickSort analysis: the same bound on
the h1 and h2 functions was re-used, and even the final deterministic recurrence
ended up being the same. This is not that surprising, because binary search trees
and randomized QuickSort are known to be deeply related.

However, we see it as a benefit of the theorems from §3 that we are able to
easily re-use some of these intermediate results without having to first prove an
explicit connection between the height of the tree and the span of the parallel
sort. This is important because when we consider minor variants of QuickSort
and binary search trees, the connection between them becomes less clear. For ex-
ample, with parallel QuickSort under a cost model where filtering has a O(log n)
overhead, the connection between the span and the binary search tree height is
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less obvious, yet we can still re-use aspects of the arguments above. In fact, in our
Coq formalization we have verified the solution to the corresponding recurrence
relation for span under this cost model without much additional work.

A.3 Randomized Leader Election

Our last example is a randomized leader election protocol. The set-up is that
there are n distributed nodes in a fully connected network, and they want to
designate one of them as a “leader” that will be used for coordination of tasks6.
We consider a protocol that has been analyzed by several authors [31, 51]. The
protocol consists of stages called “rounds”. At the beginning of a round, each
node that wants to try to become the leader generates a random bit. If the bit is
1, the node is said to remain “active” and sends a message to all the other nodes
indicating its continuing intention to become the leader. Otherwise, if the bit is
0 it becomes inactive and stops trying to become the leader. If, within a round,
only a single node gets a 1 bit, it becomes the leader. Otherwise, if multiple
nodes generate a 1 bit, they each try again in the next round. Of course, it is
possible that every active node will generate a 0 within a round: in that case,
no messages are sent within the round, and instead of becoming inactive, those
nodes try again in the next round, so as to avoid the possibility of having no
leader elected.

Code modeling the outcome of this protocol is shown in Figure 5. With the
description of the protocol given above, it is possible for the protocol to never
terminate because every active node could keep drawing a 1 bit and never become
inactive. Therefore, to ensure termination, the leader_elect function takes an
argument rounds which is a limit on the number of rounds simulated by the
code. The remaining number of active nodes is represented by the argument
players. If either rounds goes to 0, or the number of players drops below 2, the
function terminates. If not, the process of each active node generating a bit and
updating their status is simulated with binomial, which returns the number of
nodes that generated a 1. If the result of binomial is 0, then the process repeats
recursively with the same value of players, but the number of remaining rounds
is decreased by 1. Otherwise, the output of binomial is the new number of active
players in the recursive call.

As the name binomial suggests, the number of nodes that generate a 1 in a
round is given by the binomial distribution, but the actual number of nodes that
proceed to the next round is not quite the same because of the special case where
every node generates a 0. Recursive random processes in which sub-problem
size distributions are very nearly equal to a binomial distribution are known
as binomial splitting processes. These arise in the analysis of many algorithms
and data structures, including tries, radix sort, and random number generation,
among others. (See [33] for an overview and references.)

6 Versions of this problem are a well-studied subject in the theory of distributed com-
puting [43].
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Fixpoint binomial (n: nat) : ldist nat :=
match n with
| 0 => mret O
| S n’ => b <- flip;

rest <- binomial n’;
if b then
mret (S rest)

else
mret rest

end.

Fixpoint leader_elect (rounds: nat) (players: nat) : ldist (nat * nat) :=
match rounds with
| O => mret (O, players)
| S rounds’ =>
match players with
| O => mret (rounds, O)
| 1 => mret (rounds, S O)
| S (S _) =>
(surv <- binomial players;
(if surv == O then

(* no one survived, current players repeat in next round *)
leader_elect rounds’ players

else
leader_elect rounds’ surv))

end
end.

Fig. 5. Model of leader election protocol.
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Although the number of rounds needed for this protocol is unbounded, in-
tuitively we expect that for n initially active nodes, not much more than log n
rounds should be needed because the number of active players very nearly halves
on average. Because there is only a single recursive call in each round, we can
use Theorem 1 to derive a tail bound that confirms this intuitive understanding.

Even though the recursive process here is rather different from the previous
three examples, the recurrence relation solutions we developed there end up
applying here as well. We define the size of an input to the protocol to be 0
if the number of rounds is 0, and otherwise it is the number of active nodes.
Because each recursive call corresponds to 1 round, we can use the same choice
of function a as we did for the tree height example. The recursive problem size
h is the binomial process with the special case for all 0 bits. In expectation, it
is not quite half the input size, but an easy inductive argument shows that once
more

m(x) =

0 x < 4/3

3x
4 x ≥ 4/3

suffices. Putting it all together, we show that if T (x) is the difference between
the input rounds and the final remaining rounds, and we start with n initial
players, then

Pr
[
T (x) > log4/3 n+ 1 + w

]
≤
(
3

4

)w

Notice that unlike the previous bounds, we do not scale by a factor of n on
the right side of the inequality, because Theorem 1 does not require this. The
above bound implies, for instance, that with 512 players, the probability that
the protocol takes more than 64 rounds is less than 10−5.
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